搜索
    上传资料 赚现金
    英语朗读宝

    吉林省长春外国语学校2025届数学九年级第一学期开学达标检测试题【含答案】

    吉林省长春外国语学校2025届数学九年级第一学期开学达标检测试题【含答案】第1页
    吉林省长春外国语学校2025届数学九年级第一学期开学达标检测试题【含答案】第2页
    吉林省长春外国语学校2025届数学九年级第一学期开学达标检测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省长春外国语学校2025届数学九年级第一学期开学达标检测试题【含答案】

    展开

    这是一份吉林省长春外国语学校2025届数学九年级第一学期开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )
    A.平均数B.中位数C.众数D.方差
    2、(4分)下列一元二次方程中,没有实数根的是( )
    A.x2=2xB.2x2+3=0C.x2+4x-1=0D.x2-8x+16=0
    3、(4分)下列根式中,与不是同类二次根式的是( )
    A.B.C.D.
    4、(4分)已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为( )
    A.12B.24C.36D.48
    5、(4分)如图,在平行四边形ABCD中,点E是CD边上一点,,连接AE、BE、BD,且AE、BD交于点F,若,则( )
    A.15.5B.16.5C.17.5D.18.5
    6、(4分)若把点A(-5m,2m-1)向上平移3个单位后得到的点在x轴上,则点A在( )
    A.x轴上B.第三象限C.y轴上D.第四象限
    7、(4分)如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=50°,则∠2的度数为( )
    A.30°B.40°C.50°D.60°
    8、(4分)下列各式从左到右的变形中,是分解因式的是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,,,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,则的长__________.
    10、(4分)小明参加岗位应聘中,专业知识、工作经验、仪表形象三项的得分分别为:分、分、分.若这三项的重要性之比为,则他最终得分是_________分.
    11、(4分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(-10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是 ______ .
    12、(4分)已知一个多边形的每个内角都是,则这个多边形的边数是_______.
    13、(4分)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,DE的长=________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分) (1)计算:
    (2)解方程: .
    15、(8分)如图,在四边形中,,,,点是的中点.点以每秒1个单位长度的速度从点出发,沿向点运动;同时,点以每秒2个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.求当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.
    16、(8分)已知,在正方形中,点、在上,且.
    (1)求证:四边形是菱形;
    (2)若正方形的边长为,求菱形的面积.
    17、(10分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:
    (1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x>100)条之间的函数关系式;
    (2)王先生选取哪种方式购买跳绳省钱?
    18、(10分)如图,已知△ABC中,三个顶点的坐标是:A(-3,6)、B(-5,3)、C(-2,1).
    (1)画出△ABC向右平移五个单位得到的,并写出的坐标;
    (2)画出△ABC关于轴对称的,并写出的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是 .
    20、(4分)如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为______.
    21、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了100米,则山坡的高度BC为_____米.
    22、(4分)若直线与直线平行,且与两坐标轴围成的面积为1,则这条直线的解析式是________________.
    23、(4分)如图,在中,, 分别是的中点,且,延长到点,使,连接,若四边形是菱形,则______
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点是边长为的正方形对角线上一个动点(与不重合),以为圆心,长为半径画圆弧,交线段于点,联结,与交于点.设的长为,的面积为.
    (1)判断的形状,并说明理由;
    (2)求与之间的函数关系式,并写出定义域;
    (3)当四边形是梯形时,求出的值.
    25、(10分)解一元二次方程.
    (1) (2)
    26、(12分)一次函数(a为常数,且).
    (1)若点在一次函数的图象上,求a的值;
    (2)当时,函数有最大值2,请求出a的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.
    【详解】
    11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,
    故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
    故选B.
    本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.
    2、B
    【解析】
    根据根的判别式可以判断各个选项中的方程是否有实数根,从而可以解答本题.
    【详解】
    解:A、△=(-2)2-4×1×0=4>0,此方程有两不相等实数根;
    B、△=0-4×2×3=-24<0,此方程没有实数根;
    C、△=16-4×1×(-1)=20>0,此方程有两不相等实数根;
    D、原方程配方得(x-4)2=0,此方程有两相等的根.
    故选:B.
    本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    3、C
    【解析】
    各项化简后,利用同类二次根式定义判断即可.
    【详解】
    A、原式=3,不符合题意;
    B、原式=,不符合题意;
    C、原式=2,符合题意;
    D、原式=,不符合题意,
    故选:C.
    本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.
    4、B
    【解析】
    首先根据题意画出图形,由一个菱形的边长为5,其中一条对角线长为8,可利用勾股定理,求得另一菱形的对角线长,继而求得答案.
    【详解】
    解:如图,
    ∵菱形ABCD中,BD=8,AB=5,
    ∴AC⊥BD,OB=BD=4,
    ∴OA==3,
    ∴AC=2OA=6,
    ∴这个菱形的面积为:AC•BD=×6×8=1.
    故选B.
    此题考查了菱形的性质以及勾股定理.注意菱形的面积等于其对角线积的一半.
    5、C
    【解析】
    根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF,再根据同高的三角形的面积之比等于底的比得出△BEF的面积,则= +即可求解.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴DE∥AB,
    ∴△DFE∽△BFA,
    ∵DE:EC=2:3,
    ∴DE:AB=2:5,DF:FB=2:5,
    ∵=2,根据相似三角形的面积比等于相似比的平方,
    ∴: =,即==12.5,
    ∵同高的三角形的面积之比等于底的比,△DEF和△BEF分别以DF、FB为底时高相同,
    ∴:= DF:FB=2:5,即==5,
    ∴= +=12.5+5=17.5,
    故选C.
    本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质.
    6、D
    【解析】
    让点A的纵坐标加3后等于0,即可求得m的值,进而求得点A的横纵坐标,即可判断点A所在象限.
    【详解】
    ∵把点A(﹣5m,2m﹣1)向上平移3个单位后得到的点在x轴上,∴2m﹣1+3=0,解得:m=﹣1,∴点A坐标为(5,﹣3),点A在第四象限.
    故选D.
    本题考查了点的平移、坐标轴上的点的坐标的特征、各个象限的点的坐标的符号特点等知识点,是一道小综合题.用到的知识点为:x轴上的点的纵坐标为0;上下平移只改变点的纵坐标.
    7、C
    【解析】
    作BF∥a,根据平行线的性质即可求解.
    【详解】
    解:作BF∥a,
    ∴∠3=∠1=50°,
    ∵四边形ABCD是矩形,
    ∴∠ABC=∠BCD=90°,
    ∴∠4=40°,
    ∵BF∥a,a∥b,
    ∴BF∥b,
    ∴∠5=∠4=40°,
    ∴∠2=180°﹣∠5﹣90°=50°,
    故选:C.
    此题主要考查平行线的性质,解题的关键是根据题意作出辅助线进行求解.
    8、B
    【解析】
    A、是整式乘法,不符合题意;B、是因式分解,符合题意;C、右边不是整式的积的形式,不符合题意;D、右边不是整式的积的形式,不符合题意,
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根据三角形中位线定理计算即可.
    【详解】
    解:在△ABQ和△EBQ中,

    ∴△ABQ≌△EBQ(ASA),
    ∴BE=AB=5,AQ=QE,
    同理可求CD=AC=7,AP=PD,
    ∴DE=CD-CE=CD-(BC-BE)=2,
    ∵AP=PD,AQ=QE,
    ∴PQ=DE=1,
    故答案为:1.
    本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    10、15.1
    【解析】
    根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
    【详解】
    根据题意得:(分),
    答:他最终得分是15.1分.
    故答案为:15.1.
    本题考查了加权平均数的概念.在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.
    11、(-4,3),或(-1,3),或(-9,3)
    【解析】
    ∵A(-10,0),C(0,3),
    , .
    ∵点D是OA的中点,
    .
    当 时, , .
    当 时,,
    ,
    当 时, , .
    当 时,不合题意.
    故答案有三种情况.
    【点睛】本题考查了矩形的性质,等腰三角形的概念,平面直角坐标系中点的坐标及分类 的思想.涉及等腰三角形的计算,不管是角的计算还是腰的计算,一般都要进行分类讨论.像本题就要分四种情况进行计算.
    12、18
    【解析】
    首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.
    【详解】
    解:多边形每一个内角都等于
    多边形每一个外角都等于
    边数
    故答案为
    此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补,外角和为360°.
    13、5
    【解析】
    首先根据矩形的性质可得出AD∥BC,即∠1=∠3,然后根据折叠知∠1=∠2,C′D=CD、BC′=BC,可得到∠2=∠3,进而得出BE=DE,设DE=x,则EC′=8-x,利用勾股定理求出x的值,即可求出DE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AD∥BC,即∠1=∠3,
    由折叠知,∠1=∠2,C′D=CD=4、BC′=BC=8,
    ∴∠2=∠3,即DE=BE,
    设DE=x,则EC′=8−x,
    在Rt△DEC′中,DC′2+EC′2=DE2
    ∴42+(8−x)2=x2解得:x=5,
    ∴DE的长为5.
    本题考查折叠问题,解题的关键是掌握折叠的性质和矩形的性质.
    三、解答题(本大题共5个小题,共48分)
    14、(1)9;(2)
    【解析】
    (1)直接利用二次根式的性质分别化简得出答案;
    (2)将方程化为一般性质,然后利用因式分解法解方程.
    【详解】
    (1)原式=9;
    (2)原方程可化为
    解得:
    此题主要考查了二次根式的混合运算和解一元二次方程,解题的关键是掌握一元二次方程的解法和二次根式的性质,本题是属于基础题型.
    15、t为2或秒
    【解析】
    由已知以点P,Q,E,D为顶点的四边形是平行四边形有两种情况,(1)当Q运动到E和C之间,(2)当Q运动到E和B之间,根据平行四边形的判定,由AD∥BC,所以当PD=QE时为平行四边形.根据此设运动时间为t,列出关于t的方程求解.
    【详解】
    解:由题意可知,AP=t,CQ=2t,CE=BC=8
    ∵AD∥BC,
    ∴当PD=EQ时,以点P,Q,E,D为顶点的四边形是平行四边形.
    ①当2t<8,即t<4时,点Q在C,E之间,如图甲.
    此时,PD=AD-AP=6-t,EQ=CE-CQ=8-2t,
    由6-t=8-2t,得t=2;
    ②当8

    相关试卷

    2025届吉林省长春新区九年级数学第一学期开学达标检测试题【含答案】:

    这是一份2025届吉林省长春新区九年级数学第一学期开学达标检测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届吉林省长春市第二实验学校九年级数学第一学期开学达标检测模拟试题【含答案】:

    这是一份2025届吉林省长春市第二实验学校九年级数学第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年吉林省长春市长春外国语学校九上数学开学综合测试模拟试题【含答案】:

    这是一份2024年吉林省长春市长春外国语学校九上数学开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map