江苏省大丰市实验初级中学2024年九上数学开学综合测试试题【含答案】
展开
这是一份江苏省大丰市实验初级中学2024年九上数学开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为( )
A.6cmB.3cmC.9cmD.12cm
2、(4分)某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有42名同学
B.该班学生这次考试成绩的众数是8
C.该班学生这次考试成绩的平均数是27
D.该班学生这次考试成绩的中位数是27分
3、(4分)一次函数y=kx+b,当k>0,b<0时,它的图象是( )
A.B.C.D.
4、(4分)如图,在平面直角坐示系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的横坐标分別为1,2,反比例函数的图像经过A,B两点,则菱形ABCD的边长为( )
A.1B.C.2D.
5、(4分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )
A.平均数 B.中位数 C.众数 D.方差
6、(4分)计算的结果为( )
A.B.C.3D.5
7、(4分)若关于x,y的二元一次方程组的解为,一次函数y=kx+b与y=mx+n的图象的交点坐标为( )
A.(1,2)B.(2,1)C.(2,3)D.(1,3)
8、(4分)如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称其中正确的结论是( )
A.①②④B.②③C.①③④D.①④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.
10、(4分)如图,在中,D是AB上任意一点,E是BC的中点,过C作,交DE的延长线于F,连BF,CD,若,,,则_________.
11、(4分)如图,已知一块直角三角板的直角顶点与原点重合,另两个顶点,的坐标分别为,,现将该三角板向右平移使点与点重合,得到,则点的对应点的坐标为__________.
12、(4分)如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.
13、(4分)计算的结果是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在“6.26”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?
15、(8分)如图,反比例函数y1=与一次函数y2=mx+n相交于A(﹣1,2),B(4,a)两点,AE⊥y轴于点E,则:
(1)求反比例函数与一次函数的解析式;
(2)若y1≤y2则直接写出x的取值范围;
(3)若M为反比例函数上第四象限内的一个动点,若满足S△ABM=S△AOB,则求点M的坐标.
16、(8分)如图,在矩形ABCD中,AB=4,AD=10,点E在AD边上,已知B、E两点关于直线l对称,直线l分别交AD、BC边于点M、N,连接BM、NE.
(1)求证:四边形BMEN是菱形;
(2)若DE=2,求NC的长.
17、(10分)先化简,再求值: ÷(1+),其中x=+1.
18、(10分)解下列方程
(1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果一个直角三角形的两边分别是6,8,那么斜边上的中线是___________.
20、(4分)若,,则=___________.
21、(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.
22、(4分)图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连接,则的最小值为_____.
23、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,点E,F为▱ABCD的对角线BD上的两点,连接AE,CF,∠AEB=∠CFD.求证:AE=CF.
25、(10分)计算:
(1) ;
(2)(﹣1)(+1)+(﹣2)2
26、(12分)计算:
化简:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
设平行四边形较短的边长为x,根据平行四边形的性质和已知条件列出方程求解即可
【详解】
解:设平行四边形较短的边长为x,
∵相邻两边长的比为3:1,
∴相邻两边长分别为3x、x,
∴2x+6x=24,
即x=3cm,
故选B.
本题主要考查平行四边形的性质,根据性质,设出未知数,列出方程是解题的关键.
2、B
【解析】
根据众数,中位数,平均数的定义解答.
【详解】
解:该班共有6+5+5+8+7+7+4=42(人),
成绩27分的有8人,人数最多,众数为27;
该班学生这次考试成绩的平均数是=(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,
该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,
故选:B.
本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
3、C
【解析】
试题解析:根据题意,有k>0,b<0,
则其图象过一、三、四象限;
故选C.
4、B
【解析】
过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为1,2,可得出纵坐标,即可求得AE,BE,再根据勾股定理得出答案.
【详解】
解:过点A作x轴的垂线,与CB的延长线交于点E,
∵A,B两点在反比例函数的图象上且横坐标分别为1,2,
∴A,B纵坐标分别为2,1,
∴AE=1,BE=1,
∴AB= = .
故选B.
本题考查菱形的性质以及反比例函数图象上点的坐标特征,熟练掌握菱形的性质以及反比例函数图象上点的坐标特征是解题的关键.
5、D
【解析】
根据方差反映数据的波动情况即可解答.
【详解】
由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.
故选D.
本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
6、C
【解析】
针对二次根式化简,零指数幂2个考点分别进行计算,然后根据实数的运算法则求得计算结果:
.故选C.
7、A
【解析】
函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.
【详解】
∵关于x,y的二元一次方程组的解为,
∴一次函数y=kx+b与y=mx+n的图象的交点坐标为(1,2).
故选A.
本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
8、D
【解析】
先判断出CE=ON,AD=OM,再判断出CE=AD,即可判断出①正确;由于四边形OABC是平行四边形,所以OA不一定等于OC,即可得出②错误;先求出三角形COM的面积,再求出三角形AOM的面积求和即可判断出③错误,根据菱形的性质判断出OB⊥AC,OB与AC互相平分即可得出④正确.
【详解】
解:如图,过点A作AD⊥y轴于D,过点C作CE⊥y轴E,
∵AM⊥x轴,CM⊥x轴,OB⊥MN,
∴四边形ONCE和四边形OMAD是矩形,
∴ON=CE,OM=AD,
∵OB是▱OABC的对角线,
∴△BOC≌△OBA,
∴S△BOC=S△OBA,
∵S△BOC=OB×CE,S△BOA=OB×AD,
∴CE=AD,
∴ON=OM,故①正确;
在Rt△CON和Rt△AOM中,ON=OM,
∵四边形OABC是平行四边形,
∴OA与OC不一定相等,
∴△CON与△AOM不一定全等,故②错误;
∵第二象限的点C在双曲线y=上,
∴S△CON=|k1|=-k1,
∵第一象限的点A在双曲线y=上,
S△AOM=|k2|=k2,
∴S阴影=S△CON+S△AOM=-k1+k2=(k2-k1),
故③错误;
∵四边形OABC是菱形,
∴AC⊥OB,AC与OB互相平分,
∴点A和点C的纵坐标相等,点A与点C的横坐标互为相反数,
∴点A与点C关于y轴对称,故④正确,
∴正确的有①④,
故选:D.
本题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的性质,全等三角形的判定和性质,菱形的性质,判断出CE=AD是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
连接AC,
∵四边形ABCD为菱形,
∴AB=BC=4,A、C关于BD对称,
∴连AM交BD于P,
则PM+PC=PM+AP=AM,
根据两点之间线段最短,AM的长即为PM+PC的最小值.
∵∠ABC=60°,AB=BC,
∴△ABC为等边三角形,
又∵BM=CM,
∴AM⊥BC,
∴AM=,
故答案为:2.
本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
10、1
【解析】
证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.
【详解】
解:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED(ASA).
∴CF=BD.
∴四边形CDBF是平行四边形.
作EM⊥DB于点M,
∵四边形CDBF是平行四边形,,
∴BE=,DF=2DE,
在Rt△EMB中,EM2+BM2=BE2且EM=BM
∴EM=1,
在Rt△EMD中,
∵∠EDM=30°,
∴DE=2EM=2,
∴DF=2DE=1.
故答案为:1.
本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,
11、
【解析】
根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.
【详解】
∵A(-1,0),
∴OA=1,
∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB′,
∴平移的距离为1个单位长度,
∵点B的坐标为
∴点B的对应点B′的坐标是,
故答案为:.
此题主要考查根据平移的性质求点坐标,熟练掌握,即可解题.
12、
【解析】
先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.
【详解】
∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形、正方形,
∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为,
故答案为.
本题考查平行四边形、矩形、菱形、正方形、等腰梯形的性质及概率的计算方法,熟练掌握图形的性质及概率公式是解答本题的关键. 如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
13、9
【解析】
根据二次根式的性质进行化简即可.
【详解】
=|-9|=9.
故答案为:9.
此题主要考查了二次根式的化简,注意:.
三、解答题(本大题共5个小题,共48分)
14、甲小区住户有175户,乙小区住户有50户
【解析】
设乙小区住户为x户,则甲小区住户有:(3x+25)户,根据每户平均收到资料的数量相同,列出方程,解答即可.
【详解】
解:设乙小区住户为x户,
根据题意得:,
解得:,
经检验是原方程的解,
∴甲小区住户,
所以,甲小区住户有175户,乙小区住户有50户.
本题考查了分式方程的实际应用,解题的关键是找到题目中的关系,列出分式方程.
15、(1) ,;(2)x≤﹣1或0<x≤1;(3)点M的坐标(2,﹣1)或(3+,).
【解析】
(1)先将点A代入反比例函数解析式中即可求出反比例函数的解析式,然后根据反比例函数的解析式求出点B的坐标,再利用待定系数法即可求出一次函数的解析式;
(2)根据图象及两个函数的交点即可得出x的取值范围;
(3)先求出一次函数与y轴的交点坐标,然后利用S△ABM=S△AOB和平移的相关知识分两种情况:向上平移或向下平移两种情况,分别求出平移后的直线与反比例函数在第四象限的交点即可.
【详解】
(1)把A(﹣1,2)代入反比例函数得,k=﹣2
∴反比例函数的关系式为,
把B(1,a)代入得, ,
∴B(1,)
把A(﹣1,2),B(1,)代入一次函数得,
解得
∴一次函数的关系式为:
(2)当时,反比例函数的图象在一次函数图象的下方,
结合图象可知,当,自变量x的取值范围为:x≤﹣1或0<x≤1.
(3)当时,
∴与y轴的交点坐标为(0,),如图:
∵S△ABM=S△AOB
∴根据平行线间的距离处处相等,可将一次函数进行平移个单位,则平移后的直线与反比例函数在第四象限的交点即为所求的M点.
将向下平移个单位过O点,关系式为:,
解得 ,
∵M在第四象限,
∴M(2,﹣1),
将向上平移个单位后直线的关系式为:,
解得 ,
∵M在第四象限,
∴,
综上所述,点M的坐标(2,﹣1)或,
本题主要考查反比例函数,一次函数与几何综合,掌握待定系数法及平移的相关知识和二元一次方程组的解法是解题的关键.
16、(1)证明见解析; (2)NC=1.
【解析】
(1)根据B、E两点关于直线l对称,可得BM=ME,BN=NE,再根据矩形的性质可得BM=BN,从而得出BM=ME=BN=NE,通过四边相等的四边形是菱形即可得出结论;(2) 菱形边长为x,利用勾股定理计算即可.
【详解】
(1)∵ B、E两点关于直线l对称
∴ BM=ME,BN=NE,∠BMN=∠EMN在矩形ABCD中,AD∥BC
∴ ∠EMN=∠MNB
∴ ∠BMN=∠MNB
∴ BM=BN
∴ BM=ME=BN=NE
∴ 四边形ECBF是菱形.
(2)设菱形边长为x
则 AM=8-x
在Rt△ABM中,
∴ x=1.
∴NC=1.
本题考查了轴对称的性质及勾股定理的应用,解题的关键是熟记轴对称的性质.
17、, .
【解析】
根据分式的运算法则即可求出答案.
【详解】
解:原式==.
当x=+1时,
原式==.
点睛:本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
18、(1),;(2),
【解析】
(1)用直接开平方法求解即可;
(2)用求根公式法求解即可.
【详解】
(1)解:由.
得.
即,或.
于是,方程的两根为,.
(2)解:,,.
.
方有两个不相等的实数根
.
即,.
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4或5
【解析】
【分析】分两种情况分析:8可能是直角边也可能是斜边;根据直角三角形斜边上的中线等于斜边的一半.
【详解】当一个直角三角形的两直角边分别是6,8时,
由勾股定理得,斜边==10,则斜边上的中线=×10=5,
当8是斜边时,斜边上的中线是4,
故答案为:4或5
【点睛】本题考核知识点:直角三角形斜边上的中线.解题关键点:分两种情况分析出斜边.
20、
【解析】
首先根据平方差公式进行变换,然后直接代入,即可得解.
【详解】
解:根据平方差公式,可得
=
将,,代入,得
原式==
故答案为.
此题主要考查平方差公式的运用,熟练掌握即可解题.
21、或﹣.
【解析】
试题分析:当点F在OB上时,设EF交CD于点P,
可求点P的坐标为(,1).
则AF+AD+DP=3+x, CP+BC+BF=3﹣x,
由题意可得:3+x=2(3﹣x),
解得:x=.
由对称性可求当点F在OA上时,x=﹣,
故满足题意的x的值为或﹣.
故答案是或﹣.
考点:动点问题.
22、
【解析】
过作,利用正方形的性质和全等三角形的判定得出,进而利用勾股定理解答即可.
【详解】
解:过作,
正方形,
,,
,
,
,且,,
,
,,
当时,的最小值为
故答案为:
本题考查正方形的性质,关键是利用正方形的性质和全等三角形的判定得出.
23、3≤S≤1.
【解析】
根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.
【详解】
∵点A、B的坐标分别为(-5,0)、(-2,0),
∴AB=3,
y=-2x2+4x+8=-2(x-1)2+10,
∴顶点D(1,10),
由图象得:当0≤x≤1时,y随x的增大而增大,
当1≤x≤3时,y随x的增大而减小,
∴当x=3时,即m=3,P的纵坐标最小,
y=-2(3-1)2+10=2,
此时S△PAB=×2AB=×2×3=3,
当x=1时,即m=1,P的纵坐标最大是10,
此时S△PAB=×10AB=×10×3=1,
∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤1;
故答案为3≤S≤1.
本题考查了二次函数的增减性和对称性,及图形和坐标特点、三角形的面积,根据P的纵坐标确定△PAB的面积S的最大值和最小值是本题的关键.
二、解答题(本大题共3个小题,共30分)
24、详见解析
【解析】
由平行四边形的性质得出AB=CD,∠BAE=∠CDF,由AAS证明证得△ABE≌△CDF,继而证得结论.
【详解】
解:证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠BAE=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(AAS).
∴AE=CF.
题考查了平行四边形的性质以及全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
25、 (1);(2)8-
【解析】
(1)根据二次根式的混合运算法则进行计算即可.
(2)利用完全平方公式和平方差公式进行计算即可.
【详解】
(1)原式=3++2﹣
=3+2+
=;
(2)原式=2﹣1+3﹣4+4
=8﹣4.
此题考查二次根式的混合运算,解题关键在于利用平方差公式和完全平方公式进行计算.
26、;
【解析】
(1)按顺序先分别算术平方根定义,零指数幂、负整数指数幂法则计算,然后再按运算顺序进行计算即可;
(2)原式通分并利用同分母分式的减法法则计算即可求出值.
【详解】
原式
=
=;
原式
=
=.
本题考查了实数的运算、异分母分式的加减运算,涉及了算术平方根、负指数幂、零指数幂的运算等,熟练掌握各运算的运算法则是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
24
25
26
27
28
29
30
人数(人)
6
5
5
8
7
7
4
相关试卷
这是一份2025届江苏省苏州市梁丰初级中学九上数学开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省江苏省大丰市万盈初级中学数学九年级第一学期开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省江苏省大丰市万盈初级中学九年级数学第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。