


江苏省高邮市阳光双语2024-2025学年九上数学开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式的值为0,则x的值为
A.3B.C.3或D.0
2、(4分)某玩具厂要生产a只吉祥物“欢欢”,原计划每天生产b只,实际每天生产了(b+c)只,则该厂提前完成任务的天数是( )
A.B.C.D.
3、(4分)下列变形中,正确的是( )
A.B.
C.D.
4、(4分)一次函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)关于的一元二次方程,下列说法错误的是( )
A.方程无实数解
B.方程有一个实数解
C.有两个相等的实数解
D.方程有两个不相等的实数解
6、(4分)某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是( )
A.B.
C.D.
7、(4分)一次函数的图象经过点,且的值随的增大而增大,则点的坐标可以为( )
A.B.C.D.
8、(4分)已知空气单位体积质量是,将用科学记数法表示为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.
10、(4分)如图,,,,若,则的长为______.
11、(4分)已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点,则关于x的方程﹣3x+b=﹣kx+1的解为x=_____.
12、(4分)如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为 .
13、(4分)计算()•()的结果是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)中,AD是的平分线,,垂足为E,作,交直线AE于点设,.
若,,依题意补全图1,并直接写出的度数;
如图2,若是钝角,求的度数用含,的式子表示;
如图3,若,直接写出的度数用含,的式子表示.
15、(8分)如图1,矩形顶点的坐标为,定点的坐标为.动点从点出发,以每秒个单位长度的速度沿轴的正方向匀速运动,动点从点出发,以每秒个单位长度的速度沿轴的负方向匀速运动,两点同时运动,相遇时停止.在运动过程中,以为斜边在轴上方作等腰直角三角形,设运动时间为秒,和矩形重叠部分的面积为,关于的函数如图2所示(其中,,时,函数的解析式不同).
当 时,的边经过点;
求关于的函数解析式,并写出的取值范围.
16、(8分)如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.
(1)求证:∠DEF=∠ABF;
(2)求证:F为AD的中点;
(3)若AB=8,AC=10,且EC⊥BC,求EF的长.
17、(10分)已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.
(1)求证:BD、EF互相平分;
(2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.
18、(10分)某校为了了解八年级学生的身体素质情况,该校体育老师从八年级学生中随机抽取了50名进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下的统计图表:
请结合图表完成下列问题:
(1)表中的______ ;
(2)请把频数分布直方图补充完整;
(3)所抽取的50名学生跳绳成绩的中位数落在哪一组?
(4)该校八年级学生共有500人,若规定一分钟跳绳次数()在时为达标,请估计该校八年级学生一分钟跳绳有多少人达标?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系xOy中,一次函数与反比例函数的图象交于点,.结合图象,直接写出关于x的不等式的解集____
20、(4分)如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=_____,∠ABC=_____°.
21、(4分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是_____.
22、(4分)写出一个经过二、四象限的正比例函数_________________________.
23、(4分)如图,在▱ABCD中,∠A=72°,将□ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=_____°.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.
(1)直接写出直线的解析式为______,______.
(2)在直线上存在点,使是的中线,求点的坐标;
(3)如图2,在轴正半轴上存在点,使,求点的坐标.
25、(10分)解下列方程
(1)
(2)
26、(12分)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点F的坐标为(-1,5),求点E的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据分式的值为零的条件可以求出x的值.
【详解】
由分式的值为零的条件得x-1=2,且x+1≠2,
解得x=1.
故选A.
本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
2、D
【解析】
试题解析:玩具厂要生产a只吉祥物“欢欢”,原计划每天生产b只,
原计划的时间是天,
实际每天生产了(b+c)只,
实际用的时间是天,
可提前的天数是
故选D.
3、A
【解析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非1的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非1的数或式子,分式的值改变.
【详解】
A、,正确;
B、,错误;
C、,错误;
D、,错误;
故选A.
本题主要考查了分式的性质.注意约分是约去分子、分母的公因式,并且分子与分母相同时约分结果应是1,而不是1.
4、B
【解析】
由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限
【详解】
解:∵,
∴函数图象一定经过一、三象限;
又∵,函数与y轴交于y轴负半轴,
∴函数经过一、三、四象限,不经过第二象限
故选B
此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响
5、B
【解析】
将各选项的k带入方程验证,即可得到答案.
【详解】
解:A,当k=2017,k-2019==-2,该方程无实数解,故正确;
B, 当k=2018,k-2019==-1,该方程无实数解,故错误;
C,当k=2019,k-2019==0,解得x=1,故正确;
D, 当k=2020,k-2019=2020-2019=1,解得x=0或x=2,故正确;
因此答案为B.
本题主要考查二元一次方程的特点,把k值代入方程验证是解答本题的关键.
6、D
【解析】
试题分析:由于某人出去散步,从家走了20分钟,到一个离家900米的阅报亭,并且看报纸10分钟,这是时间在加长,而离家的距离不变,再按原路返回用时15分钟,离家的距离越来越短,由此即可确定表示张大伯离家时间与距离之间的关系的函数图象.
解:依题意,0~20min散步,离家路程从0增加到900m,
20~30min看报,离家路程不变,
30~45min返回家,离家从900m路程减少为0m,
且去时的速度小于返回的速度,
故选D.
【点评】此题主要考查了函数图象,利用图象信息隐含的数量关系确定所需要的函数图象是解答此题的关键.
7、C
【解析】
根据函数图象的性质判断y的值随x的增大而增大时,k>0,由此得到结论.
【详解】
∵一次函数y=kx-1的图象的y的值随x值的增大而增大,
∴k>0,
A、把点(-5,3)代入y=kx-1得到:k=-<0,不符合题意;
B、把点(5,-1)代入y=kx-1得到:k=0,不符合题意;
C、把点(2,1)代入y=kx-1得到:k=1>0,符合题意;
D、把点(1,-3)代入y=kx-1得到:k=-2<0,不符合题意;
故选C.
考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
8、C
【解析】
由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:=.
故选:C.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、12.
【解析】
因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.
【详解】
解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;
当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;
∴顶角的度数为80°或20°.
故答案为80°或20°.
本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.
10、1
【解析】
作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.
【详解】
解:作PE⊥OB于E,如图所示:
∵PD⊥OA,∴PE=PD=4,
∵PC∥OA,∠AOP=∠BOP=15°,
∴∠OPC=∠AOP=15°,
∴∠ECP=15°+15°=30°,
∴PC=2PE=1.
故答案为:1.
本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.
11、1
【解析】
由题意可知当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,由此即可得答案.
【详解】
∵直线y=﹣1x+b与直线y=﹣kx+1在同一坐标系中交于点,
∴当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,
∴关于x的方程﹣1x+b=﹣kx+1的解为x=1,
故答案为:1.
本题考查了一次函数与一元一次方程,熟知两条直线交点的横坐标使两个函数的值相等是解题的关键.
12、x<.
【解析】
先把点A(m,3)代入函数y=2x求出m的值,再根据函数图象即可直接得出结论.
【详解】
∵点A(m,3)在函数y=2x的图象上,
∴3=2m,解得m=,
∴A(,3),
由函数图象可知,当x<时,函数y=2x的图象在函数y=ax+5图象的下方,
∴不等式2x<ax+5的解集为:x<.
13、-2
【解析】
利用平方差公式进行展开计算即可得.
【详解】
=
=-2,
故答案为:-2.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)补图见解析,;(2) ;(3) .
【解析】
(1)先根据三角形内角和定理求出∠BAC和∠CAE,根据角平分线定义求出∠CAD,即可求出答案;
(2)先根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据三角形外角性质求出∠ADC,根据三角形内角和定理求出∠DAE,根据平行线的性质求出即可;
(3)求出∠DAE度数,根据平行线的性质求出即可.
【详解】
解:如图1,
,,
,
是的平分线,
,
,
,
,
,
,
,
;
如图2,
中,,
.
,
是的平分线,
,
,
,
,
,
,
,
;
如图3,
中,,
,
,
是的平分线,
,
,
,
,
,
.
本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.
15、(1)1;(2)S=
【解析】
(1)PQR的边QR经过点B时, 构成等腰直角三角形,则由AB=AQ,列方程求出t值即可.
(2)在图形运动的过程中,有三种情形,当1<t≤2时,当1<t≤2时,当2<t≤4时,进行分类讨论求出答案.
【详解】
解:PQR的边QR经过点B时, 构成等腰直角三角形;
AB=AQ,即3=4-t
①当时,如图
设交于点,过点作于点
则
②当时,如图
设交于点交于点
则,
③当时,如图
设与交于点,则
综上所述,关于的函数关系式为:S=
此题属于四边形综合题.考查了矩形的性质、等腰直角三角形的性质、相似三角形的判定与性质以及动点问题.注意掌握分类讨论思想的应用是解此题的关键.
16、(1)见解析;(2)见解析;(3)
【解析】
(1)根据等角的余角相等证明即可;
(2)如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,首先证明△ANB≌△DME,可得AN=DM,然后证明△AFN≌△DFM,求出AF=FD即可;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,想办法求出FM,EM即可.
【详解】
(1)证明: ∵CB=CE,
∴∠CBE=∠CEB,
∵∠ABC=∠CED=90°,
∴∠DEF+∠CEB=90°,∠ABF+∠CBE=90°,
∴∠DEF=∠ABF.
(2)证明:如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.
∵∠ABN=∠DEM,∠ANB=∠M=90°,AB=DE,
∴△ANB≌△DME(AAS),
∴AN=DM,
∵∠ANF=∠M=90°,∠AFN=∠DFM,AN=DM,
∴△AFN≌△DFM(AAS),
∴AF=FD,即F为AD的中点;
(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.
在Rt△ABC中,∵∠ABC=90°,AC=10,AB=8,
∴BC=EC==6,
∵EC⊥BC,
∴∠BCE=∠ACD=90°,
∵AC=CD=10,
∴AD=10,
∴DF=AF=5,
∵∠MED=∠CEB=45°,
∴EM=MD=4,
在Rt△DFM中,FM==3,
∴EF=EM-FM=.
本题考查旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
17、(1)证明见解析;(2)四边形DEBF的周长为12 ,面积是4
【解析】
分析:(1)证明EF、BD互相平分,只要证DEBF是平行四边形;利用两组对边分别平行来证明.
(2)求四边形DEBF的周长,求出BE和DE即可.
详解:(1)∵四边形ABCD是平行四边形
∴CD∥AB,CD=AB,AD=BC
∵DE、BF分别是∠ADC和∠ABC的角平分线
∴∠ADE=∠CDE,∠CBF=∠ABF
∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF
∴∠AED=∠ADE,∠CFB=∠CBF
∴AE=AD,CF=CB,∴AE=CF,∴AB-AE=CD-CF 即BE=DF
∵DF∥BE,∴四边形DEBF是平行四边形
∵∠A=60°,AE=AD∴△ADE是等边三角形
∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2
∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12
过D点作DG⊥AB于点G,
在Rt△ADG中,AD=4,∠A=60°,
∴DG=ADcs∠A=4×=
∴四边形DEBF的面积=BE×DG=2×=4
点睛:此题主要考查了平行四边形的性质与判定.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
18、(1)12;(2)见解析;(3)第3组;(4)360人;
【解析】
(1)用调查总人数减去其他小组的频数即可求得a值;
(2)根据调查的总人数和每一小组的频数即可确定中位数落在那个范围内;
(3)用总人数乘以达标率即可.
【详解】
(1)a=50-6-8-18-6=12;
统计图为:
(2)∵共50人,
∴中位数为第25人和第26人的平均数,
∵第25人和第26人均落在第3小组内,
∴中位数落在第3小组内;
(3)达优人数为:500×=360人;
估计该校八年级学生一分钟跳绳有360人达标?
此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是根据直方图得到进一步解题的有关信息.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x<-2或0
利用图像即可求出不等式的解集.
【详解】
结合图像可知:当x<-2或0
故答案为x<-2或0
20、10 1.
【解析】
连接AC,根据勾股定理得到AB2,BC2,AC2的长度,证明△ABC是等腰直角三角形,继而可得出∠ABC的度数.
【详解】
连接AC.
根据勾股定理可以得到:AB2=12+32=10,
AC2=BC2=12+22=5,
∵5+5=10,即AC2+BC2=AB2,
∴△ABC是等腰直角三角形,
∴∠ABC=1°.
故答案为:10,1.
考查了勾股定理及其逆定理,判断△ABC是等腰直角三角形是解决本题的关键.
21、(﹣5,4).
【解析】
首先由A、B两点坐标,求出AB的长,根据菱形的性质可得AD=CD=AB,从而可得到点C的横坐标;接下来在△AOD中,利用勾股定理求出DO的长,结合上面的结果,即可确定出C点的坐标.
【详解】
由题知A(3,0),B(-2,0),D在y轴上,
∴AB=3-(-2)=5,OA=3,BO=2,
由菱形邻边相等可得AD=AB=5,
在Rt△AOD中,由勾股定理得:
OD==4,
由菱形对边相等且平行得CD=BA=5,
所以C(-5,4).
故答案为(﹣5,4).
本题考查了菱形的性质及坐标与图形的性质,运用勾股定理求出OD的长是解答本题的关键.
22、y=-2x …(答案不唯一)
【解析】
解:答案不唯一,只要k<0即可.如:y=-2x ….故答案为y=-2x …(答案不唯一).
23、1
【解析】
由旋转的性质可知:▱ABCD全等于▱A1BC1D1,得出BC=BC1,由等腰三角形的性质得出∠BCC1=∠C1,由旋转角∠ABA1=∠CBC1,根据等腰三角形的性质计算即可.
【详解】
∵▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,
∴BC=BC1,
∴∠BCC1=∠C1,
∵∠A=72°,
∴∠DCB=∠C1=72°,
∴∠BCC1=∠C1,
∴∠CBC1=180°﹣2×72°=1°,
∴∠ABA1=1°,
故答案为1.
本题考查了平行四边形的性质、旋转的性质、等腰三角形的判定和性质以及三角形的内角和定理,解题的关键是证明三角形CBC1是等腰三角形.
二、解答题(本大题共3个小题,共30分)
24、(1),22;(2);(3)
【解析】
(1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计算出22;
(2)作轴于,轴于,易得,则,
再将x=4代入得到y=11,所以;
(3)在轴正半轴上取一点,使,由外角性质和等腰三角形的性质得出,再用勾股定理求得OP的长,即可得出答案.
【详解】
解:(1)直线沿x轴向右平移2个单位长度,则
y=-2(x-2)-7
=-2x-3
将和联立,得
解得
易得
故答案为:,22;
(2)作轴于,轴于,
∵
∴,,
∵为的中线,
∴,
∵,
∴,
∴,
在中,
当时,,
∴.
(3)由(1)得,,
∴, ,
在轴正半轴上取一点,使,
∵,
∴,
∴,
∵,
∴,
∴,
在中,由勾股定理可得:,
∴.
本题考查了一次函数和几何的综合,熟练掌握一次函数的图象和性质是解题关键.
25、(1),;(2),
【解析】
(1)用直接开平方法求解即可;
(2)用求根公式法求解即可.
【详解】
(1)解:由.
得.
即,或.
于是,方程的两根为,.
(2)解:,,.
.
方有两个不相等的实数根
.
即,.
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
26、点E坐标(2,3)
【解析】
过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,由“AAS”可证△AOE≌△PFE,可得AE=PF,PE=AO,即可求点E坐标.
【详解】
解:如图,过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,
∵四边形是正方形
∴EF=OE,∠FEO=90°
∵∠FEP+∠PEO=90°,∠PEO+∠AOE=90°
∴∠AOE=∠FEP,且EF=OE,∠EPF=∠OAE=90°
∴△AOE≌△PFE(AAS)
∴AE=PF,PE=AO,
∵点F(-1,5)
∴AO+PF=5,PE-AE=1
∴AO=3=PE,AE=2=PF
∴点E坐标(2,3).
本题考查了正方形的性质,全等三角形的判定和性质,坐标与图形的性质,证明△AOE≌△PFE是本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
组别
次数
频数(人数)
第1组
6
第2组
8
第3组
第4组
18
第5组
6
江苏省高邮市阳光双语初中2024-2025学年九上数学开学检测模拟试题【含答案】: 这是一份江苏省高邮市阳光双语初中2024-2025学年九上数学开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省高邮市阳光双语数学九上开学综合测试模拟试题【含答案】: 这是一份2024年江苏省高邮市阳光双语数学九上开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省扬州市高邮市汪曾祺学校数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年江苏省扬州市高邮市汪曾祺学校数学九上开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。