江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】
展开
这是一份江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x的方程 是一元二次方程,则m的取值范围是( )
A..B..C.D..
2、(4分)一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有( )
A.40人B.30人C.20人D.10人
3、(4分)下列四组线段中,可以构成直角三角形的是( )
A.2,3,4B.3,4,5C.4,5,6D.7,8,9
4、(4分)若二次根式有意义,则x的取值范围是( )
A.x≤﹣B.x≥﹣C.x≥D.x≤
5、(4分)如图,在平面直角坐标系中,反比例函数的图象经过,两点,,两点的纵坐标分别为3,1,若的中点为点,则点向左平移________个单位后落在该反比例函数图象上?( )
A.B.2C.1D.
6、(4分)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是( )
A.这50名学生是总体的一个样本
B.每位学生的体考成绩是个体
C.50名学生是样本容量
D.650名学生是总体
7、(4分)已知点的坐标为,则点在第( )象限
A.一B.二C.三D.四
8、(4分)如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为( )cm
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直角三角形有两边长为3和4,则斜边长为_____.
10、(4分)若一次函数中,随的增大而减小,则的取值范围是______.
11、(4分)成立的条件是___________________.
12、(4分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而_____.(填“增大”或“减小”)
13、(4分)要使二次根式有意义,则的取值范围是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1)
(2) -
15、(8分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
16、(8分)已知四边形是菱形,点分别在上,且,点分别在上,与相交于点.
(1)如图1,求证:四边形是菱形;
(2)如图2,连接,在不添加任何辅助线的情况下,请直接写出面积相等的四边形
17、(10分)如图,矩形纸片ABCD中,AD=4,AB=8,把纸片沿直线AC折叠,使点B落在E处,AE交DC于点F,求△CEF的面积.
18、(10分)一辆货车从A地运货到240km的B地,卸货后返回A地,如图中实线是货车离A地的路程y(km)关于出发后的时间x(h)之间的函数图象.货车出发时,正有一个自行车骑行团在AB之间,距A地40km处,以每小时20km的速度奔向B地.
(1)货车去B地的速度是 ,卸货用了 小时,返回的速度是 ;
(2)求出自行车骑行团距A地的路程y(km)关于x的函数关系式,并在此坐标系中画出它的图象;
(3)求自行车骑行团与货车迎面相遇,是货车出发后几小时后,自行车骑行团还有多远到达B地.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.
20、(4分)计算:=_____________。
21、(4分)一次函数y=﹣2x+6的图象与x轴的交点坐标是_____.
22、(4分)化简:_________.
23、(4分)关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.
二、解答题(本大题共3个小题,共30分)
24、(8分)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:
(1)乙工程队每天修公路多少米?
(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.
(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?
25、(10分)如图,抛物线与直线相交于,两点,且抛物线经过点
(1)求抛物线的解析式.
(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;
(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.
26、(12分)如图,四边形是面积为的平行四边形,其中.
(1)如图①,点为边上任意一点,则的面积和的面积之和与的面积之间的数量关系是__________;
(2)如图②,设交于点,则的面积和的面积之和与的面积之间的数量关系是___________;
(3)如图③,点为内任意一点时,试猜想的面积和的面积之和与的面积之间的数量关系,并加以证明;
(4)如图④,已知点为内任意一点,的面积为,的面积为,连接,求的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一元二次方程的定义可得m﹣1≠0,再解即可.
【详解】
由题意得:m﹣1≠0,
解得:m≠1,
故选A.
此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
2、C
【解析】
根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.
【详解】
∵成绩在4.05米以上的频数是8,频率是0.4,
∴参加比赛的运动员=8÷0.4=20.
故选C.
考查频数与频率,掌握数据总和=频数÷频率是解题的关键.
3、B
【解析】
不能构成直角三角形,故A选项错误;
可以构成直角三角形,故B选项正确;
不能构成直角三角形,故C选项错误;
不能构成直角三角形,故D选项错误;
故选B.
如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
4、C
【解析】
【分析】根据二次根式有意义的条件——被开方数为非负数进行求解即可得.
【详解】由题意得:2x-1≥0,
解得:x≥,
故选C.
【点睛】本题考查了二次根式有意义的条件,熟知被开方数为非负数时二次根式有意义是解题的关键.
5、D
【解析】
根据题意可以推出A,B两点的坐标,由此可得出M点的坐标,设平移n个单位,然后表示出平移后的坐标为(2-n,2),代入函数解析式,即可得到答案.
【详解】
由题意可得A(1,3),B(3,1),
∴M(2,2),
设M点向左平移n个单位,则平移后的坐标为(2-n,2),
∴(2-n)×2=3,
∴n=.
故选:D.
本题主要考查了中点坐标的计算,反比例函数,细心分析即可.
6、B
【解析】
因为这50名学生的体考成绩是总体的一个样本,所以选项A错误;
因为每位学生的体考成绩是个体,所以选项B正确;
因为50是样本容量,样本容量是个数字,没有单位,所以选项C错误;
因为这650名学生的体考成绩是总体,所以选项D错误.
故选B.
7、B
【解析】
应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.
【详解】
解:∵点的坐标为
∴点在第二象限
故选:B
本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
8、D
【解析】
作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.
【详解】
如下图,连接BD,角AC于点E,
∵四边形ABCD为菱形,
∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,
在Rt△AEB中, AE=3cm,
∴AB==3=2
故选D.
本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4或1
【解析】
直角三角形中斜边为最长边,无法确定边长为4的边是否为斜边,所以要讨论(1)边长为4的边为斜边;(2)边长为4的边为直角边.
【详解】
解:(1)当边长为4的边为斜边时,该直角三角形中斜边长为4;
(2)当边长为4的边为直角边时,则根据勾股定理得斜边长为=1,
故该直角三角形斜边长为4cm或1cm,
故答案为:4或1.
本题考查了勾股定理在直角三角形中的运用,考查了分类讨论思想,本题中运用分类讨论思想讨论边长为4的边是直角边还是斜边是解题的关键
10、
【解析】
在中,当时随的增大而增大,当时随的增大而减小.由此列不等式可求得的取值范围.
【详解】
解:一次函数是常数)中随的增大而减小,
,解得,
故答案为:.
本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,
11、x≥1
【解析】
分析:根据二次根式有意义的条件可得x+1≥0,x-1≥0,求出x的范围.
详解:由题意得,x+1≥0,x-1≥0,
解得:x≥-1,x≥1,
综上所述:x≥1.
故答案为:x≥1.
点睛:本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式有意义的条件.
12、减小
【解析】
【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.
【详解】∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),
∴0=k+3,
∴k=﹣3,
∴y的值随x的增大而减小,
故答案为减小.
【点睛】本题考查了一次函数的图象与性质,熟练掌握待定系数法以及一次函数的增减性与一次函数的比例系数k之间的关系是解题的关键.
13、x≥1
【解析】
根据二次根式被开方数为非负数进行求解.
【详解】
由题意知,,
解得,x≥1,
故答案为:x≥1.
本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
分析:
(1)按照“二次根式加减法法则”进行计算即可;
(2)根据“二次根式相关运算的运算法则”结合“平方差公式和完全平方公式”进行计算即可.
详解:
(1)原式= ==;
(2)原式= = = .
点睛:熟记“二次根式的相关运算法则和平方差公式及完全平方公式”是解答本题的关键.
15、1
【解析】
试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.
考点:相似三角形的应用.
16、(1)见解析;(2)四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.
【解析】
(1)由MG∥AD,NF∥AB,可证得四边形AMEN是平行四边形,又由四边形ABCD是菱形,BM=DN,可得AM=AN,即可证得四边形AMEN是菱形;
(2)根据四边形AMEN是菱形得到ME=NE,S△AEM=S△AEN,作出辅助线,证明△MHB≌△NKD(AAS),得到MH=NK,从而得到S四边形MBFE=S四边形DNEG,继而求得答案.
【详解】
(1)证明:∵MG∥AD,NF∥AB,
∴四边形AMEN是平行四边形,
∵四边形ABCD是菱形,
∴AB=AD,
∵BM=DN,
∴AB−BM=AD−DN,
∴AM=AN,
∴四边形AMEN是菱形;
(2)解:∵四边形AMEN是菱形,
∴ME=NE,∴S△AEM=S△AEN,
如图所示,过点M作MH⊥BC于点H,过点N作NK⊥CD于点K,
∴∠MHB=∠NKD=90°
∵四边形ABCD是菱形,
∴∠B=∠D,
∵BM=DN,
∴△MHB≌△NKD(AAS),
∴MH=NK
∴S四边形MBFE=S四边形DNEG,
∴S四边形MBCG=S四边形DNFC,S四边形ABFE=S四边形ADGE,S四边形ABFN=S四边形ADGM.
∴面积相等的四边形有:四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.
此题考查了菱形的性质与判定.解题的关键是掌握菱形的性质以及判定定理.
17、S△CEF=6.
【解析】
先利用全等三角形的判定与的性质求出FD=FE,FA=FC,设FD=x,则FA=FC=8-x,利用勾股定理求出x,即可解答
【详解】
AD=EC,∠D=∠C,∠AFD=∠CFE,
所以,△AFD≌△CFE,
所以,FD=FE,FA=FC,
设FD=x,则FA=FC=8-x
在Rt△ADF中,
42+x2=(8-x)2,解得:x=3,
所以,FD=3,
S△CEF=S△ADF==6
此题考查全等三角形的判定与性质,勾股定理,解题关键在于求出FD=3
18、(1)60km/h,1小时,80km/h(2)y=20x+40 (0≤x≤10)(3)自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地
【解析】
分析:(1)根据速度,以及函数图象中的信息即可解决问题; (2)根据题意y=20x+40(0≤x≤10),画出函数图象即可; (3)利用方程组求交点坐标即可;
详解:(1)货车去B地的速度==60km/h,观察图象可知卸货用了1小时,
返回的速度==80km/h,故答案为60(km/h),1,80(km/h).
(2)由题意y=20x+40 (0≤x≤10),函数图象如图所示,
(3)货车返回时,y关于x的函数解析式是:y=﹣80x+640 (5≤x≤8)
解方程组,解得得,
答:自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地.
点睛:本题考查了一次函数的应用及速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(1,3)或(4,3)
【解析】
根据△ODP是腰长为5的等腰三角形,因此要分类讨论到底是哪两条腰相等:①PD=OD为锐角三角形;②OP=OD;③OD=PD为钝角三角形,注意不重不漏.
【详解】
∵C(0,3),A(9,0)
∴B的坐标为(9,3)
①当P运动到图①所示的位置时
此时DO=PD=5
过点P作PE⊥OA于点E,
在RT△OPE中,根据勾股定理4
∴OE=OD-DE=1
此时P点的坐标为(1,3);
②当P运动到图②所示的位置时
此时DO=PO=5
过点P作PE⊥OA于点E,
在RT△OPE中,根据勾股定理4
此时P点的坐标为(4,3);
③当P运动到图③所示的位置时
此时OD=PD=5
过点P作PE⊥OA于点E
在RT△OPE中,根据勾股定理4
∴OE=OD+DE=9
此时P点的坐标为(9,3),此时P点与B点重合,故不符合题意.
综上所述,P的坐标为(1,3)或(4,3)
本题主要考查等腰三角形的判定以及勾股定理的应用.
20、2+
【解析】
按二次根式的乘法法则求解即可.
【详解】
解:.
本题考查的是二次根式的乘法运算,熟练掌握二次根式的乘法法则是解题的关键.
21、(3,0)
【解析】
y=0,即可求出x的值,即可求解.
【详解】
解:当y=0时,有﹣2x+6=0,
解得:x=3,
∴一次函数y=﹣2x+6的图象与x轴的交点坐标是(3,0).
故答案为:(3,0).
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
22、
【解析】
分子分母同时约去公因式5xy即可.
【详解】
解:.
故答案为.
此题主要考查了分式的约分,关键是找出分子分母的公因式.
23、1.
【解析】
首先计算出不等式的解集x≤,再结合数轴可得不等式的解集为x≤1,进而得到方程=1,解方程可得答案.
【详解】
2x﹣a≤﹣1,
x≤,
∵解集是x≤1,
∴=1,解得:a=1,
故答案为1.
此题主要考查了在数轴上表示不等式的解集,关键是正确解不等式.
二、解答题(本大题共3个小题,共30分)
24、(1)120米(2)y乙=120x﹣1,y甲=60x(3)2
【解析】
解:(1)由图得:720÷(2﹣3)=120(米),
答:乙工程队每天修公路120米.
(2)设y乙=kx+b,则,解得:.∴y乙=120x﹣1.
当x=6时,y乙=1.
设y甲=kx,则1=6k,k=60,∴y甲=60x.
(3)当x=15时,y甲=200,∴该公路总长为:720+200=1620(米).
设需x天完成,由题意得:
(120+60)x=1620,解得:x=2.
答:该项工程由甲、乙两工程队一直合作施工,需2天完成
(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数.
(2)根据函数的图象运用待定系数法即可求出y与x之间的函数关系式.
(3)先求出该公路总长,再设出需要x天完成,根据题意列出方程组,求出x,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.
25、(1);(2)点坐标为(2,9)或(6,-7);(3)存在点Q()使得四边形OFQC的面积最大,见解析.
【解析】
(1)先由点在直线上求出点的坐标,再利用待定系数法求解可得;
(2)可设出点坐标,则可表示出、的坐标,从而可表示出和的长,由条件可知到关于点坐标的方程,则可求得点坐标;
(3)作轴于点,设,,知,,,根据四边形的面积建立关于的函数,再利用二次函数的性质求解可得.
【详解】
解:(1)点在直线上,
,,
把、、三点坐标代入抛物线解析式可得,解得,
抛物线解析式为;
(2)设,则,,
则,,
,
,
当时,解得或,但当时,与重合不合题意,舍去,
;
当时,解得或,但当时,与重合不合题意,舍去,
;
综上可知点坐标为或;
(3)存在这样的点,使得四边形的面积最大.
如图,过点作轴于点,
设,,
则,,,
四边形的面积
,
当时,四边形的面积取得最大值,最大值为,此时点的坐标为,.
本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及利用割补法列出四边形面积的函数关系式.
26、(1); (2); (3)结论:;理由见解析;(4)6
【解析】
(1)根据平行四边形的性质可知:,即可解决问题;
(2)理由平行四边形的性质可知:,即可解决问题;
(3)结论:.如图③中,作于,延长交于.根据;
(4)设的面积为,的面积为,则,推出,可得的面积;
【详解】
解:(1)如图①中,,.
四边形是平行四边形,
,
,
,
.
故答案为.
(2)如图②中,四边形是平行四边形,
,,
,
.
故答案为.
(3)结论:.
理由:如图③中,作于,延长交于.
,,
,
.
(4)设的面积为,的面积为,
则,
,
的面积,
本题考查平行四边形的判定和性质、平行线的性质、等高模型等正整数,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份江苏省海安县2025届数学九上开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省海安市八校2024-2025学年九上数学开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省灌云县联考2024-2025学年九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。