终身会员
搜索
    上传资料 赚现金

    江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】

    立即下载
    加入资料篮
    江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】第1页
    江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】第2页
    江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】

    展开

    这是一份江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若关于x的方程 是一元二次方程,则m的取值范围是( )
    A..B..C.D..
    2、(4分)一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有( )
    A.40人B.30人C.20人D.10人
    3、(4分)下列四组线段中,可以构成直角三角形的是( )
    A.2,3,4B.3,4,5C.4,5,6D.7,8,9
    4、(4分)若二次根式有意义,则x的取值范围是( )
    A.x≤﹣B.x≥﹣C.x≥D.x≤
    5、(4分)如图,在平面直角坐标系中,反比例函数的图象经过,两点,,两点的纵坐标分别为3,1,若的中点为点,则点向左平移________个单位后落在该反比例函数图象上?( )
    A.B.2C.1D.
    6、(4分)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是( )
    A.这50名学生是总体的一个样本
    B.每位学生的体考成绩是个体
    C.50名学生是样本容量
    D.650名学生是总体
    7、(4分)已知点的坐标为,则点在第( )象限
    A.一B.二C.三D.四
    8、(4分)如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为( )cm
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直角三角形有两边长为3和4,则斜边长为_____.
    10、(4分)若一次函数中,随的增大而减小,则的取值范围是______.
    11、(4分)成立的条件是___________________.
    12、(4分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而_____.(填“增大”或“减小”)
    13、(4分)要使二次根式有意义,则的取值范围是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:
    (1)
    (2) -
    15、(8分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
    16、(8分)已知四边形是菱形,点分别在上,且,点分别在上,与相交于点.
    (1)如图1,求证:四边形是菱形;
    (2)如图2,连接,在不添加任何辅助线的情况下,请直接写出面积相等的四边形
    17、(10分)如图,矩形纸片ABCD中,AD=4,AB=8,把纸片沿直线AC折叠,使点B落在E处,AE交DC于点F,求△CEF的面积.
    18、(10分)一辆货车从A地运货到240km的B地,卸货后返回A地,如图中实线是货车离A地的路程y(km)关于出发后的时间x(h)之间的函数图象.货车出发时,正有一个自行车骑行团在AB之间,距A地40km处,以每小时20km的速度奔向B地.
    (1)货车去B地的速度是 ,卸货用了 小时,返回的速度是 ;
    (2)求出自行车骑行团距A地的路程y(km)关于x的函数关系式,并在此坐标系中画出它的图象;
    (3)求自行车骑行团与货车迎面相遇,是货车出发后几小时后,自行车骑行团还有多远到达B地.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.

    20、(4分)计算:=_____________。
    21、(4分)一次函数y=﹣2x+6的图象与x轴的交点坐标是_____.
    22、(4分)化简:_________.
    23、(4分)关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:
    (1)乙工程队每天修公路多少米?
    (2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.
    (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?
    25、(10分)如图,抛物线与直线相交于,两点,且抛物线经过点
    (1)求抛物线的解析式.
    (2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;
    (3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.
    26、(12分)如图,四边形是面积为的平行四边形,其中.
    (1)如图①,点为边上任意一点,则的面积和的面积之和与的面积之间的数量关系是__________;
    (2)如图②,设交于点,则的面积和的面积之和与的面积之间的数量关系是___________;
    (3)如图③,点为内任意一点时,试猜想的面积和的面积之和与的面积之间的数量关系,并加以证明;
    (4)如图④,已知点为内任意一点,的面积为,的面积为,连接,求的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据一元二次方程的定义可得m﹣1≠0,再解即可.
    【详解】
    由题意得:m﹣1≠0,
    解得:m≠1,
    故选A.
    此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
    2、C
    【解析】
    根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.
    【详解】
    ∵成绩在4.05米以上的频数是8,频率是0.4,
    ∴参加比赛的运动员=8÷0.4=20.
    故选C.
    考查频数与频率,掌握数据总和=频数÷频率是解题的关键.
    3、B
    【解析】
    不能构成直角三角形,故A选项错误;
    可以构成直角三角形,故B选项正确;
    不能构成直角三角形,故C选项错误;
    不能构成直角三角形,故D选项错误;
    故选B.
    如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
    4、C
    【解析】
    【分析】根据二次根式有意义的条件——被开方数为非负数进行求解即可得.
    【详解】由题意得:2x-1≥0,
    解得:x≥,
    故选C.
    【点睛】本题考查了二次根式有意义的条件,熟知被开方数为非负数时二次根式有意义是解题的关键.
    5、D
    【解析】
    根据题意可以推出A,B两点的坐标,由此可得出M点的坐标,设平移n个单位,然后表示出平移后的坐标为(2-n,2),代入函数解析式,即可得到答案.
    【详解】
    由题意可得A(1,3),B(3,1),
    ∴M(2,2),
    设M点向左平移n个单位,则平移后的坐标为(2-n,2),
    ∴(2-n)×2=3,
    ∴n=.
    故选:D.
    本题主要考查了中点坐标的计算,反比例函数,细心分析即可.
    6、B
    【解析】
    因为这50名学生的体考成绩是总体的一个样本,所以选项A错误;
    因为每位学生的体考成绩是个体,所以选项B正确;
    因为50是样本容量,样本容量是个数字,没有单位,所以选项C错误;
    因为这650名学生的体考成绩是总体,所以选项D错误.
    故选B.
    7、B
    【解析】
    应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.
    【详解】
    解:∵点的坐标为
    ∴点在第二象限
    故选:B
    本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    8、D
    【解析】
    作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.
    【详解】
    如下图,连接BD,角AC于点E,
    ∵四边形ABCD为菱形,
    ∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,
    在Rt△AEB中, AE=3cm,
    ∴AB==3=2
    故选D.
    本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4或1
    【解析】
    直角三角形中斜边为最长边,无法确定边长为4的边是否为斜边,所以要讨论(1)边长为4的边为斜边;(2)边长为4的边为直角边.
    【详解】
    解:(1)当边长为4的边为斜边时,该直角三角形中斜边长为4;
    (2)当边长为4的边为直角边时,则根据勾股定理得斜边长为=1,
    故该直角三角形斜边长为4cm或1cm,
    故答案为:4或1.
    本题考查了勾股定理在直角三角形中的运用,考查了分类讨论思想,本题中运用分类讨论思想讨论边长为4的边是直角边还是斜边是解题的关键
    10、
    【解析】
    在中,当时随的增大而增大,当时随的增大而减小.由此列不等式可求得的取值范围.
    【详解】
    解:一次函数是常数)中随的增大而减小,
    ,解得,
    故答案为:.
    本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,
    11、x≥1
    【解析】
    分析:根据二次根式有意义的条件可得x+1≥0,x-1≥0,求出x的范围.
    详解:由题意得,x+1≥0,x-1≥0,
    解得:x≥-1,x≥1,
    综上所述:x≥1.
    故答案为:x≥1.
    点睛:本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式有意义的条件.
    12、减小
    【解析】
    【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.
    【详解】∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),
    ∴0=k+3,
    ∴k=﹣3,
    ∴y的值随x的增大而减小,
    故答案为减小.
    【点睛】本题考查了一次函数的图象与性质,熟练掌握待定系数法以及一次函数的增减性与一次函数的比例系数k之间的关系是解题的关键.
    13、x≥1
    【解析】
    根据二次根式被开方数为非负数进行求解.
    【详解】
    由题意知,,
    解得,x≥1,
    故答案为:x≥1.
    本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)
    【解析】
    分析:
    (1)按照“二次根式加减法法则”进行计算即可;
    (2)根据“二次根式相关运算的运算法则”结合“平方差公式和完全平方公式”进行计算即可.
    详解:
    (1)原式= ==;
    (2)原式= = = .
    点睛:熟记“二次根式的相关运算法则和平方差公式及完全平方公式”是解答本题的关键.
    15、1
    【解析】
    试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.
    考点:相似三角形的应用.
    16、(1)见解析;(2)四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.
    【解析】
    (1)由MG∥AD,NF∥AB,可证得四边形AMEN是平行四边形,又由四边形ABCD是菱形,BM=DN,可得AM=AN,即可证得四边形AMEN是菱形;
    (2)根据四边形AMEN是菱形得到ME=NE,S△AEM=S△AEN,作出辅助线,证明△MHB≌△NKD(AAS),得到MH=NK,从而得到S四边形MBFE=S四边形DNEG,继而求得答案.
    【详解】
    (1)证明:∵MG∥AD,NF∥AB,
    ∴四边形AMEN是平行四边形,
    ∵四边形ABCD是菱形,
    ∴AB=AD,
    ∵BM=DN,
    ∴AB−BM=AD−DN,
    ∴AM=AN,
    ∴四边形AMEN是菱形;
    (2)解:∵四边形AMEN是菱形,
    ∴ME=NE,∴S△AEM=S△AEN,
    如图所示,过点M作MH⊥BC于点H,过点N作NK⊥CD于点K,
    ∴∠MHB=∠NKD=90°
    ∵四边形ABCD是菱形,
    ∴∠B=∠D,
    ∵BM=DN,
    ∴△MHB≌△NKD(AAS),
    ∴MH=NK
    ∴S四边形MBFE=S四边形DNEG,
    ∴S四边形MBCG=S四边形DNFC,S四边形ABFE=S四边形ADGE,S四边形ABFN=S四边形ADGM.
    ∴面积相等的四边形有:四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.
    此题考查了菱形的性质与判定.解题的关键是掌握菱形的性质以及判定定理.
    17、S△CEF=6.
    【解析】
    先利用全等三角形的判定与的性质求出FD=FE,FA=FC,设FD=x,则FA=FC=8-x,利用勾股定理求出x,即可解答
    【详解】
    AD=EC,∠D=∠C,∠AFD=∠CFE,
    所以,△AFD≌△CFE,
    所以,FD=FE,FA=FC,
    设FD=x,则FA=FC=8-x
    在Rt△ADF中,
    42+x2=(8-x)2,解得:x=3,
    所以,FD=3,
    S△CEF=S△ADF==6
    此题考查全等三角形的判定与性质,勾股定理,解题关键在于求出FD=3
    18、(1)60km/h,1小时,80km/h(2)y=20x+40 (0≤x≤10)(3)自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地
    【解析】
    分析:(1)根据速度,以及函数图象中的信息即可解决问题; (2)根据题意y=20x+40(0≤x≤10),画出函数图象即可; (3)利用方程组求交点坐标即可;
    详解:(1)货车去B地的速度==60km/h,观察图象可知卸货用了1小时,
    返回的速度==80km/h,故答案为60(km/h),1,80(km/h).
    (2)由题意y=20x+40 (0≤x≤10),函数图象如图所示,
    (3)货车返回时,y关于x的函数解析式是:y=﹣80x+640 (5≤x≤8)
    解方程组,解得得,
    答:自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地.
    点睛:本题考查了一次函数的应用及速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(1,3)或(4,3)
    【解析】
    根据△ODP是腰长为5的等腰三角形,因此要分类讨论到底是哪两条腰相等:①PD=OD为锐角三角形;②OP=OD;③OD=PD为钝角三角形,注意不重不漏.
    【详解】
    ∵C(0,3),A(9,0)
    ∴B的坐标为(9,3)
    ①当P运动到图①所示的位置时

    此时DO=PD=5
    过点P作PE⊥OA于点E,
    在RT△OPE中,根据勾股定理4
    ∴OE=OD-DE=1
    此时P点的坐标为(1,3);
    ②当P运动到图②所示的位置时
    此时DO=PO=5
    过点P作PE⊥OA于点E,
    在RT△OPE中,根据勾股定理4
    此时P点的坐标为(4,3);
    ③当P运动到图③所示的位置时
    此时OD=PD=5
    过点P作PE⊥OA于点E
    在RT△OPE中,根据勾股定理4
    ∴OE=OD+DE=9
    此时P点的坐标为(9,3),此时P点与B点重合,故不符合题意.
    综上所述,P的坐标为(1,3)或(4,3)
    本题主要考查等腰三角形的判定以及勾股定理的应用.
    20、2+
    【解析】
    按二次根式的乘法法则求解即可.
    【详解】
    解:.
    本题考查的是二次根式的乘法运算,熟练掌握二次根式的乘法法则是解题的关键.
    21、(3,0)
    【解析】
    y=0,即可求出x的值,即可求解.
    【详解】
    解:当y=0时,有﹣2x+6=0,
    解得:x=3,
    ∴一次函数y=﹣2x+6的图象与x轴的交点坐标是(3,0).
    故答案为:(3,0).
    此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
    22、
    【解析】
    分子分母同时约去公因式5xy即可.
    【详解】
    解:.
    故答案为.
    此题主要考查了分式的约分,关键是找出分子分母的公因式.
    23、1.
    【解析】
    首先计算出不等式的解集x≤,再结合数轴可得不等式的解集为x≤1,进而得到方程=1,解方程可得答案.
    【详解】
    2x﹣a≤﹣1,
    x≤,
    ∵解集是x≤1,
    ∴=1,解得:a=1,
    故答案为1.
    此题主要考查了在数轴上表示不等式的解集,关键是正确解不等式.
    二、解答题(本大题共3个小题,共30分)
    24、(1)120米(2)y乙=120x﹣1,y甲=60x(3)2
    【解析】
    解:(1)由图得:720÷(2﹣3)=120(米),
    答:乙工程队每天修公路120米.
    (2)设y乙=kx+b,则,解得:.∴y乙=120x﹣1.
    当x=6时,y乙=1.
    设y甲=kx,则1=6k,k=60,∴y甲=60x.
    (3)当x=15时,y甲=200,∴该公路总长为:720+200=1620(米).
    设需x天完成,由题意得:
    (120+60)x=1620,解得:x=2.
    答:该项工程由甲、乙两工程队一直合作施工,需2天完成
    (1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数.
    (2)根据函数的图象运用待定系数法即可求出y与x之间的函数关系式.
    (3)先求出该公路总长,再设出需要x天完成,根据题意列出方程组,求出x,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.
    25、(1);(2)点坐标为(2,9)或(6,-7);(3)存在点Q()使得四边形OFQC的面积最大,见解析.
    【解析】
    (1)先由点在直线上求出点的坐标,再利用待定系数法求解可得;
    (2)可设出点坐标,则可表示出、的坐标,从而可表示出和的长,由条件可知到关于点坐标的方程,则可求得点坐标;
    (3)作轴于点,设,,知,,,根据四边形的面积建立关于的函数,再利用二次函数的性质求解可得.
    【详解】
    解:(1)点在直线上,
    ,,
    把、、三点坐标代入抛物线解析式可得,解得,
    抛物线解析式为;
    (2)设,则,,
    则,,


    当时,解得或,但当时,与重合不合题意,舍去,

    当时,解得或,但当时,与重合不合题意,舍去,

    综上可知点坐标为或;
    (3)存在这样的点,使得四边形的面积最大.
    如图,过点作轴于点,
    设,,
    则,,,
    四边形的面积

    当时,四边形的面积取得最大值,最大值为,此时点的坐标为,.
    本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及利用割补法列出四边形面积的函数关系式.
    26、(1); (2); (3)结论:;理由见解析;(4)6
    【解析】
    (1)根据平行四边形的性质可知:,即可解决问题;
    (2)理由平行四边形的性质可知:,即可解决问题;
    (3)结论:.如图③中,作于,延长交于.根据;
    (4)设的面积为,的面积为,则,推出,可得的面积;
    【详解】
    解:(1)如图①中,,.
    四边形是平行四边形,




    故答案为.
    (2)如图②中,四边形是平行四边形,
    ,,


    故答案为.
    (3)结论:.
    理由:如图③中,作于,延长交于.
    ,,


    (4)设的面积为,的面积为,
    则,

    的面积,
    本题考查平行四边形的判定和性质、平行线的性质、等高模型等正整数,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    题号





    总分
    得分
    批阅人

    相关试卷

    江苏省海安县2025届数学九上开学学业质量监测试题【含答案】:

    这是一份江苏省海安县2025届数学九上开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省海安市八校2024-2025学年九上数学开学达标测试试题【含答案】:

    这是一份江苏省海安市八校2024-2025学年九上数学开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省灌云县联考2024-2025学年九上数学开学学业水平测试试题【含答案】:

    这是一份江苏省灌云县联考2024-2025学年九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map