搜索
    上传资料 赚现金
    英语朗读宝

    江苏省江阴市暨阳中学2024年数学九年级第一学期开学统考试题【含答案】

    江苏省江阴市暨阳中学2024年数学九年级第一学期开学统考试题【含答案】第1页
    江苏省江阴市暨阳中学2024年数学九年级第一学期开学统考试题【含答案】第2页
    江苏省江阴市暨阳中学2024年数学九年级第一学期开学统考试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省江阴市暨阳中学2024年数学九年级第一学期开学统考试题【含答案】

    展开

    这是一份江苏省江阴市暨阳中学2024年数学九年级第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若在反比例函数的图像上,则下列结论正确的是( )
    A.B.
    C.D.
    2、(4分)在中,斜边,则的值为( )
    A.6B.9C.18D.36
    3、(4分)一个正多边形的每一个外角都等于45°,则这个多边形的边数为( )
    A.4B.6C.8D.10
    4、(4分)下列各组数是勾股数的是( )
    A.2,3,4
    B.4,5,6
    C.3.6,4.8,6
    D.9,40,41
    5、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
    A.a2+c2=b2B.c2=2a2C.a=bD.∠C=90°
    6、(4分)若点在反比例函数的图象上则的值是( )
    A.B.C.1. 5D.6
    7、(4分)如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中不能说明四边形ABCD是平行四边形的是( )
    A.AD=BCB.AC=BD
    C.AB∥CDD.∠BAC=∠DCA
    8、(4分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在一个长6m、宽3m、高2m的房间里放进一根竹竿,竹竿最长可以是________.
    10、(4分) 已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_____.
    11、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是________ cm.
    12、(4分)如图,将三角形纸片的一角折叠,使点B落在AC边上的F处,折痕为DE.已知AB=AC=3,BC=4,若以点E,F,C为顶点的三角形与△ABC相似,那么BE的长是_______.
    13、(4分)一次函数的图象经过第二、三、四象限,则的取值范围是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.
    15、(8分)为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):
    (1)写出a,b的值;
    (2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.
    16、(8分)如图1,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(2,0), B(0,4).
    (1)求直线AB的解析式;
    (2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.
    (3)如图3,过点A(2,0)的直线交y轴负半轴于点P,N点的横坐标为-1,过N点的直线交AP于点M.求的值.
    17、(10分)如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.
    (1)请你判断并写出FE与FD之间的数量关系(不需证明);
    (2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
    18、(10分)甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.
    (1)甲、乙两队单独完成此项任务各需多少天?
    (2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.
    20、(4分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.
    21、(4分)计算:3-2= ;
    22、(4分)如图所示,数轴上点A所表示的数为____.
    23、(4分)已知△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y= 的图象上,则m的值为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组并求出其整数解
    25、(10分)如图,在平行四边形ABCD中,过点A作对角线BD的垂线,垂足为E,点F为AD的中点,连接FE并延长交BC于点G.
    (1)求证:;
    (2)若,,,求BG的长.
    26、(12分)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.
    (1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    将点A(a,b)代入反比例函数的解析式,即可求解.
    【详解】
    解:∵A(a,b)在反比例函数的图象上,
    ∴,即ab=-2<1,
    ∴a与b异号,
    ∴<1.
    故选D.
    本题考查了反比例函数图象上点的坐标特征,函数图象上的点,一定满足函数的解析式.
    2、C
    【解析】
    根据勾股定理即可求解.
    【详解】
    在Rt△ABC中,AB为斜边,∴==9
    ∴=2=18
    故选C.
    此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.
    3、C
    【解析】
    因为多边形的外角和为360°,所以这个多边形的边数为:360÷45=8,
    故选C.
    4、D
    【解析】
    利用勾股数的定义进行判断.A选项,42≠22+32,故2,3,4不是勾股数;B选项,62≠42+52,故4,5,6不是勾股数;C选项,3.6,4.8不是正整数,故不是勾股数;D选项,三数均为正整数,且412=92+402,故9,40,41是勾股数.故选D.
    5、A
    【解析】
    根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
    【详解】
    设∠A、∠B、∠C分别为x、x、2x,
    则x+x+2x=180°,
    解得,x=45°,
    ∴∠A、∠B、∠C分别为45°、45°、90°,
    ∴a2+b2=c2,A错误,符合题意,
    c2=2a2,B正确,不符合题意;
    a=b,C正确,不符合题意;
    ∠C=90°,D正确,不符合题意;
    故选:A.
    考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
    6、A
    【解析】
    将A的坐标代入反比例函数进行计算,可得答案.
    【详解】
    将A(﹣2,3)代入反比例函数,得k=﹣2×3=﹣6,故选:A.
    本题考查反比例函数,解题的关键是将点A代入反比例函数.
    7、B
    【解析】
    解:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;
    B.∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;
    C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;
    D.∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△CDA,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.
    故选B.
    8、B
    【解析】
    解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
    当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
    当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
    当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
    当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    【分析】根据题意画出图形,首先利用勾股定理计算出BC的长,再利用勾股定理计算出AB的长即可.
    【详解】如图,∵侧面对角线BC2=32+22=13,
    ∴CB=m,
    ∵AC=6m,
    ∴AB==1m,
    ∴竹竿最大长度为1m,
    故答案为:1.
    【点睛】本题考查了勾股定理的应用,解题的关键是画出符合题意的图形,利用数形结合的思想以及勾股定理的知识解决问题.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    10、3或7
    【解析】
    分两种情况:
    (1)当AE交BC于点E时;
    在平行四边形ABCD中,则AD∥BC,DC=AB,AD=BC
    ∴∠AEB=∠EAD,
    ∵∠DAB的平分线交BC于E,
    ∴∠AEB=∠BAE,
    ∴∠AEB=∠BAE,∴AB=BE,
    设AD=x,z则BE=x-2=5
    ∴AD=5+2=7cm,
    (2) 当AE交BC于点E,交CD于点F
    ∵ABCD为平行四边形,
    ∴AB=DC=5cm,AD=BC,AD∥BC.
    ∴∠E=∠EAD,
    又∵BE平分∠BAD,
    ∴∠EAD=∠EAB,
    ∴∠EAB=∠E,
    ∴BC+CE=AB=5,
    ∴AD=BC=5−2=3(cm).故答案为3或7
    点睛:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,关键是要分两种情况讨论解答.
    11、20
    【解析】
    利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.
    【详解】
    :∵∠HEM=∠AEH,∠BEF=∠FEM,
    ∴∠HEF=∠HEM+∠FEM= ×180°=90°,
    同理可得:∠EHG=∠HGF=∠EFG=90°,
    ∴四边形EFGH为矩形,
    ∴GH∥EF,GH=EF,
    ∴∠GHN=∠EFM,
    在△GHN和△EFM中
    ∴△GHN≌△EFM(AAS),
    ∴HN=MF=HD,
    ∴AD=AH+HD=HM+MF=HF,
    ∴AD=20厘米.
    故答案为:20
    此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.
    12、或1.
    【解析】
    由于折叠前后的图形不变,要考虑△B′FC与△ABC相似时的对应情况,分两种情况讨论.
    【详解】
    解:根据△B′FC与△ABC相似时的对应关系,有两种情况:
    ①△B′FC∽△ABC时,,
    又∵AB=AC=3,BC=4,B′F=BF,
    ∴,
    解得BF=;
    ②△B′CF∽△BCA时,,
    AB=AC=3,BC=4,B′F=CF,BF=B′F,
    而BF+FC=4,即1BF=4,
    解得BF=1.
    故BF的长度是或1.
    故答案为:或1.
    本题考查相似三角形的性质.
    13、m<3
    【解析】
    根据一次函数y=(m-3)x-2的图象经过二、三、四象限判断出m的取值范围即可.
    【详解】
    ∵一次函数y=(m-3)x-2的图象经过二、三、四象限,
    ∴m-3<0,
    ∴m<3,
    故答案为:m<3.
    此题考查一次函数的图象与系数的关系,解题关键在于掌握一次函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限.
    三、解答题(本大题共5个小题,共48分)
    14、12
    【解析】
    在Rt△ABC中,∠C=90°,AC=5,AB=13,根据勾股定理,即可求出BC.
    【详解】
    解:∵在Rt△ABC中,∠C=90°,



    又∵AC=5,AB=13,

    =
    =12
    此题主要考查勾股定理的运用.
    15、(1)a=84.5,b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.
    【解析】
    (1)依据中位数和众数的定义进行计算即可;
    (2)依据平均数、中位数、方差以及众数的角度分析,即可得到哪个学生的水平较高.
    【详解】
    (1)甲组数据排序后,最中间的两个数据为:84和85,故中位数a(84+85)=84.5,乙组数据中出现次数最多的数据为81,故众数b=81;
    (2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;
    或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论).
    本题考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
    16、(2)y=﹣2x+2;(2)m的值是或或2;(3)2.
    【解析】
    (2)设直线AB的解析式是y=kx+b,代入得到方程组,求出即可;
    (2)当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,证△BMN≌△ABO(AAS),求出M的坐标即可;②当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,同法求出M的坐标;③当AM⊥BM,且AM=BM时,过M作MN⊥x轴于N,MH⊥y轴于H,证△BHM≌△AMN,求出M的坐标即可.
    (3)设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,求出H、G的坐标,证△AMG≌△ADH,△AMG≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案.
    【详解】
    (2) ∵A(2,0),B(0,2),
    设直线AB的解析式是y=kx+b,
    代入得:,
    解得:k=﹣2,b=2,
    ∴直线AB的解析式是y=﹣2x+2.
    (2)如图,分三种情况:
    ①如图①,当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,
    ∵BM⊥BA,MN⊥y轴,OB⊥OA,
    ∴∠MBA=∠MNB=∠BOA=90°,
    ∴∠NBM+∠NMB=90°,∠ABO+∠NBM=90°,
    ∴∠ABO=∠NMB,
    在△BMN和△ABO中

    ∴△BMN≌△ABO(AAS),
    MN=OB=2,BN=OA=2,
    ∴ON=2+2=6,
    ∴M的坐标为(2,6 ),
    代入y=mx得:m=,
    ②如图②,当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,

    易知△BOA≌△ANM(AAS),
    同理求出M的坐标为(6,2),
    代入y=mx得:m=,
    ③如图③,
    当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,
    ∴四边形ONMH为矩形,
    易知△BHM≌△AMN,
    ∴MN=MH,
    设M(x2,x2)代入y=mx得:x2=m x2,
    ∴m=2,
    答:m的值是或或2.
    (3)如图3,设NM与x轴的交点为H,过M作MG⊥x轴于G,过H作HD⊥x轴,
    HD交MP于D点,
    即:∠MGA=∠DHA=900,连接ND,ND 交y轴于C点
    由与x轴交于H点,∴H(2,0),
    由与y=kx﹣2k交于M点,∴M(3,k),
    而A(2,0),
    ∴A为HG的中点,AG=AH,∠MAG=∠DAH
    ∴△AMG≌△ADH(ASA),∴AM=AD
    又因为N点的横坐标为﹣2,且在上,
    ∴N(-2,﹣k),同理D(2,﹣k)
    ∴N关于y轴对称点为D
    ∴PC是ND的垂直平分线∴PN=PD, CD=NC=HA=2,∠DCP=∠DHA=900,ND平行于X轴
    ∴∠CDP=∠HAD
    ∴△ADH≌△DPC ∴AD= PD
    ∴PN=PD=AD=AM,
    ∴.
    此题是一次函数综合题,主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.
    17、(1)FE=FD (2)答案见解析
    【解析】
    (1)先在AC上截取AG=AE,连结FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,FE=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,进而得出FE=FD;
    (2)先过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,根据已知条件得到∠GEF=∠HDF,进而判定△EGF≌△DHF(AAS),即可得出FE=FD.也可以过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,再判定△EFG≌△DFH(ASA),进而得出FE=FD.
    【详解】
    (1)FE与FD之间的数量关系为:FE=FD.
    理由:如图,在AC上截取AG=AE,连结FG,
    ∵AD是∠BAC的平分线,
    ∴∠1=∠2,
    在△AEF与△AGF中

    ∴△AEF≌△AGF(SAS),
    ∴∠AFE=∠AFG,FE=FG,
    ∵∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,
    ∴2∠2+2∠3+∠B=180°,
    ∴∠2+∠3=60°,
    又∵∠AFE为△AFC的外角,
    ∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,
    ∴∠CFG=180°-60°-60°=60°,
    ∴∠GFC=∠DFC,
    在△CFG与△CFD中,

    ∴△CFG≌△CFD(ASA),
    ∴FG=FD,
    ∴FE=FD;
    (2)结论FE=FD仍然成立.
    如图,过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,

    ∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,
    ∴∠2+∠3=60°,F是△ABC的内心,
    ∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,
    ∵F是△ABC的内心,即F在∠ABC的角平分线上,
    ∴FG=FH,
    又∵∠HDF=∠B+∠1=60°+∠1,
    ∴∠GEF=∠HDF,
    在△EGF与△DHF中,

    ∴△EGF≌△DHF(AAS),
    ∴FE=FD.
    本题属于三角形综合题,主要考查了全等三角形的判定与性质,三角形外角性质,角平分线的性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
    18、(1)甲队单独完成此项任务需15天,乙队单独完成此项任务需30天;(2)1天
    【解析】
    (1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+15)天,根据甲队单独施工15天和乙队单独施工10天的工作量相同建立方程求出其解即可;
    (2)设甲队再单独施工y天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.
    【详解】
    解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天
    根据题意得
    经检验x=30是原方程的解,则x+15=15(天)
    答:甲队单独完成此项任务需15天,乙队单独完成此项任务需30天.
    (2)解:设甲队再单独施工y天,
    依题意,得,
    解得y≥1.
    答:甲队至少再单独施工1天.
    此题主要考查分式方程、一元一次方程的应用,解题的关键是根据题意找到数量关系列式求解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、75°
    【解析】
    根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.
    【详解】
    ∵∠ACB=90°,
    ∴∠MCD=90°,
    ∵∠D=60°,
    ∴∠DMC=30°,
    ∴∠AMF=∠DMC=30°,
    ∵∠A=45°,
    ∴∠1=∠A+∠AMF=45°+30°=75°,
    故选:C.
    本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF的度数.
    20、
    【解析】
    试题解析:
    所以
    故答案为
    21、
    【解析】
    根据负整数指数为正整数指数的倒数计算.
    解:3-2=.故答案为.
    22、
    【解析】
    首先计算出直角三角形斜边的长,然后再确定点A所表示的数.
    【详解】
    ∵,∴点A所表示的数1.
    故答案为:.
    本题考查了实数与数轴,关键是利用勾股定理计算出直角三角形斜边长.
    23、
    【解析】
    根据中点的坐标和平移的规律,利用点在函数图像上,可解出m的值.
    【详解】
    △ABC的三个顶点为A(-1,1),B(-1,3),C(-3,3)
    ∴AB的中点(-1,2),BC的中点(-2,0),AC的中点(-2,-1)
    ∴AB边的中点平移后为(-1+m,2),AC中点平移后为(-2+m,-1)
    ∵△ABC某一边中点落在反比例函数上
    ∴2(-1+m)=3或-1×(-2+m)=3
    m=2.5或-1(舍去).
    故答案是:.
    考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    二、解答题(本大题共3个小题,共30分)
    24、;其整数解为大于的所有整数.
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解不等式,得:,
    解不等式,得:,
    则不等式的解集为,
    不等式的整数解为大于的所有整数.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    25、(1)见解析;(2).
    【解析】
    (1)由直角三角形斜边中线定理,得到EF=DF,然后得到∠FED=∠FDE,利用平行线的性质和对顶角相等,得到∠EBG=∠BEG,从而得到BG=GE.
    (2)由平行四边形和平行线的性质,可以得到△ABE为等腰直角三角形,根据计算得AE=BE=3,又AF=EF=3,可得△AEF为等边三角形,则∠EAD=60°,从而得到∠EBG=∠ADE=30°,进而得到BG的长度.
    【详解】
    解:(1)证明:∵

    ∵点F是AD的中点


    ∵四边形ABCD是平行四边形





    (2)∵四边形ABCD是平行四边形
    ∴,





    由(1)可得,
    ∴是等边三角形




    本题考查了等腰三角形判定和性质,直角三角形斜边中线定理,以及含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的角度和边长的计算问题.
    26、(1)见解析;(2)见解析.
    【解析】
    (1)根据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再根据垂线的性质可得∠CFB=∠AED=90°,再根据全等三角形的判定(角角边)来证明即可;
    (2)根据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,根据一组对边平行且相等的四边形为平行四边形即可证明.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∴∠CBF=∠ADE,
    ∵AE⊥BD,CF⊥BD,
    ∴∠CFB=∠AED=90°,
    ∴△AED≌△CFB(AAS).
    (2)证明:∵△AED≌△CFB,
    ∴AE=CF,
    ∵AE⊥BD,CF⊥BD,
    ∴AE∥CF,
    ∴四边形AFCE是平行四边形.
    全等三角形的判定和性质及平行四边形的判定和性质是本题的考点,熟练掌握基础知识是解题的关键.
    题号





    总分
    得分

    相关试卷

    2025届江苏省无锡市江阴市暨阳中学九年级数学第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2025届江苏省无锡市江阴市暨阳中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省江阴市南菁教育集团暨阳校区数学九年级第一学期开学预测试题【含答案】:

    这是一份2024年江苏省江阴市南菁教育集团暨阳校区数学九年级第一学期开学预测试题【含答案】,共21页。试卷主要包含了选择题,四象限,则k的取值可能是,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省江阴市暨阳中学数学九年级第一学期期末综合测试试题含答案:

    这是一份2023-2024学年江苏省江阴市暨阳中学数学九年级第一学期期末综合测试试题含答案,共7页。试卷主要包含了已知3x=4y,则=,用配方法解方程,经过配方,得到等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map