![江苏省江阴市敔山湾实验学校2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16283789/0-1729689480032/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省江阴市敔山湾实验学校2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16283789/0-1729689480080/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省江阴市敔山湾实验学校2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16283789/0-1729689480096/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省江阴市敔山湾实验学校2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】
展开
这是一份江苏省江阴市敔山湾实验学校2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于的一元二次方程通过配方法可以化成的形式,则的值不可能是
A.3B.6C.9D.10
2、(4分)若一个多边形的内角和等于720°,则这个多边形的边数是( )
A.5B.6C.7D.8
3、(4分)用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设( )
A.有一个内角小于60°B.每一个内角都小于60°
C.有一个内角大于60°D.每一个内角都大于60°
4、(4分)如图,在中,,,,是边上的动点,,,则的最小值为( )
A.B.C.5D.7
5、(4分)若关于的一元二次方程的一个根是0,则的值是( )
A.1B.-1C.1或-1D.
6、(4分)大肠杆菌的长度平均约为0.0000014米,把这个数用科学记数表示正确的是( )米.
A.1.4×106B.1.4×10﹣5C.14×10﹣7D.1.4×10﹣6
7、(4分)一组从小到大排列的数据:a,3,5,5,6(a为正整数),唯一的众数是5,则该组数据的平均数是( )
A.4.2或4B.4C.3.6或3.8D.3.8
8、(4分)在▱ABCD中,∠C=32°,则∠A的度数为( )
A.148°B.128°C.138°D.32°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为_____.
10、(4分)如果多边形的每个内角都等于,则它的边数为______.
11、(4分)二次根式中字母 a 的取值范围是______.
12、(4分)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在线段BC上一动点,以AC为对角线的平行四边形ADCE中,则DE的最小值是______.
13、(4分)若关于的一元二次方程有两个相等的实数根,则的值是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)若m,n,p满足m-n=8,mn+p2+16=0,求m+n+p的值?
15、(8分)如图,在坐标系中,△ABC中A(-2,-1)、B(-3,-4)、C(0,-3).
(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;
(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的所有可能的坐标.
16、(8分)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.
(1)求S关于x的函数表达式;
(2)求x的取值范围;
(3)当S=4时,求P点的坐标.
17、(10分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.
根据统计图解答下列问题:
(1)本次测试的学生中,得4分的学生有多少人?
(2)本次测试的平均分是多少分?
(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分.且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?
18、(10分)如图,四边形是平行四边形,是边上一点.
(1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;
(2)在(1)的条件下,若,,求四边形的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点A在双曲线y=上,AB⊥y轴于B,S△ABO =3,则k=__________
20、(4分)把多项式n(n﹣2)+m(2﹣n)分解因式的结果是_____.
21、(4分)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为 .
22、(4分)五子棋的比赛规则是:一人执黑子,一人执白子,两人轮流放棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在位置用坐标表示是(-2,2),黑棋B所在位置用坐标表示是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,则点C的坐标是__________.
23、(4分)若分式的值为0,则的值是 _____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线l1:y=﹣2x与直线l2:y=kx+b在同一平面直角坐标系内交于点P.
(1)直接写出不等式﹣2x>kx+b的解集______;
(2)设直线l2与x轴交于点A,△OAP的面积为12,求l2的表达式.
25、(10分)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.请你经过观察、猜测线段FC、AE、EF之间是否存在一定的数量关系?若存在,证明你的结论;若不存在,请说明理由.
26、(12分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.
(1)求OB的长度;
(2)设DP= x,CQ= y,求y与x的函数表达式(不要求写自变量的取值范围);
(3)若OCQ是等腰三角形,求CQ的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
方程配方得到结果,即可作出判断.
【详解】
解:方程,变形得:,
配方得:,即,
,即,
则的值不可能是10,
故选:.
此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键.
2、B
【解析】
试题分析:根据内角和定理180°×(n-2)即可求得.
解:180°×(n-2)=720°,解得n=1.
考点:多边形的内角和定理.
3、B
【解析】
根据反证法的第一步是假设结论不成立矩形解答即可.
【详解】
解:用反证法证明“三角形中至少有一个内角大于或等于”时,
第一步应先假设每一个内角都小于,
故选:.
本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
4、B
【解析】
先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.
【详解】
如图,连接PC.
∵在△ABC中,AC=6,BC=8,AB=10,
∴AB2=AC2+BC2,
∴∠C=90°.
又∵PE⊥AC于点E,PF⊥BC于点F.
∴∠CEP=∠CFP=90°,
∴四边形PECF是矩形.
∴PC=EF.
∴当PC最小时,EF也最小,
即当PC⊥AB时,PC最小,
∵BC•AC=AB•PC,即PC=,
∴线段EF长的最小值为.
故选B.
本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.
5、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
6、D
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为(为整数),与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
.
故选:D.
本题主要考查了科学记数法的表示,熟练掌握相关表示方法是解决本题的关键.
7、A
【解析】
根据题意得出正整数a的值,再根据平均数的定义求解可得.
【详解】
解:∵数据:a,3,5,5,6(a为正整数),唯一的众数是5,
∴a=1或a=2,
当a=1时,平均数为:;
当a=2时,平均数为:;
故选:A.
本题主要考查了平均数的求法,根据数据是从小到大排列得出a的值是解题的关键.
8、D
【解析】
根据平行四边形的性质:对角相等即可求出的度数.
【详解】
四边形是平行四边形,
,
,
.
故选:.
本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、45°
【解析】
如图,连接OA,因OA=OC,可得∠ACO=∠OAC=45°,根据三角形的内角和公式可得∠AOC=90°,再由圆周角定理可得∠B=45°.
10、1
【解析】
先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.
【详解】
∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
11、.
【解析】
运用二次根式中的被开方数的非负性进行求解即可,即有意义,则a≥0.
【详解】
解:由题意得2a+5≥0,解得:.
故答案为.
本题考查了二次根式的意义和性质,对于二次根式而言,关键是要注意两个非负性:一是a≥0,二是≥0;在各地试卷中是高频考点.
12、1
【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
【详解】
解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.
∵OD⊥BC,BC⊥AB,
∴OD∥AB,
又∵OC=OA,
∴OD是△ABC的中位线,
∴OD=AB=3,
∴DE=2OD=1.
故答案为:1.
本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.
13、1
【解析】
因为关于的一元二次方程有两个相等的实数根,故 ,代入求解即可.
【详解】
根据题意可得: 解得:m=1
故答案为:1
本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.
三、解答题(本大题共5个小题,共48分)
14、m+n+p=0.
【解析】
试题分析:把m,n,p看成是未知数,本题已知两个方程求三个未知数,因此可以采用主元法,将其中一个未知数看成常数,另外两个当作未知数进行解答,本题由m-n=8,可得:
m=n+8,把m=n+8代入mn+p2+16=0,得n2+8n+16+p2=0,即(n+4)2+p2=0,根据非负数的非负性质可求出n=-4,p=0,所以m=4,因此m+n+p=4+(-4)+0=0.
因为m-n=8,所以m=n+8.
将m=n+8代入mn+p2+16=0中,得n(n+8)+p2+16=0,所以n2+8n+16+p2=0,即(n+4)2+p2=0.
又因为(n+4)2≥0,p2≥0,
所以,解得,所以m=n+8=4,
所以m+n+p=4+(-4)+0=0.
15、(1)画图略,A’(2,1)(2)(1,0)或(-1,-6)或(-5,-2)
【解析】
(1)找到三角形各顶点与原点对称点,再连接各点即可;
(2)根据平行四边形的性质即可在直角坐标系中找到D点.
【详解】
(1)如图,△A′B′C′为所求,A’(2,1)
(2)如图,D的坐标为(1,0)或(-1,-6)或(-5,-2)
此题主要考查坐标与图形,解题的关键是熟知直角坐标系的坐标特点.
16、(1)S=10﹣2x;(2)0<x<5;(3)(3,2)
【解析】
(1)根据题意画出图形,由x+y=5可知y=5﹣x ,再由三角形的面积公式即可得出结论;
(2)由点P(x,y)在第一象限,且x+y=5得出x的取值范围即可;
(3)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.
【详解】
(1)如图:
∵x+y=5,
∴y=5﹣x,
∴S=×4×(5﹣x)=10﹣2x;
(2)∵点P(x,y)在第一象限,且x+y=5,
∴0<x<5;
(3)∵由(1)知,S=10﹣2x,
∴10﹣2x=4,解得x=3,
∴y=2,
∴P(3,2).
本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
17、(1)25人
(2)37分
(3)第二次测试中得4分的学生有15人、得5分的学生有30人.
【解析】
(1)根据频数、频率和总量的关系:频数=总量频率计算即可.
(2)平均数是指在一组数据中所有数据之和再除以数据的个数,据此计算即可.
(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据“得4分和5分的人数共有45人”和“平均分比第一次提高了0.8分”列方程组求解即可.
【详解】
解:(1)本次测试的学生中,得4分的学生有人.
(2)本次测试的平均分平均分(分).
(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,
根据题意,得:,
解得:.
答:第二次测试中得4分的学生有15人、得5分的学生有30人.
18、 (1)见解析;(2)1.
【解析】
(1)如图,连接,交于点,作直线交于点,点即为所求;
(2)求出,即可解决问题.
【详解】
(1)如图,点即为所求;
(2),,
,
,
,
,
四边形是平行四边形,
,,
平行四边形的周长为1.
本题考查作图——复杂作图,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6
【解析】
根据反比例函数系数k的几何意义得出S△ABO=|k|,即可求出表达式.
【详解】
解: ∵△OAB的面积为3,∴k=2S△ABO=6,
∴反比例函数的表达式是y=
即k=6
本题考查反比例函数系数k的几何意三角形面积=|k|,学生们熟练掌握这个公式.
20、(n﹣2)(n﹣m).
【解析】
用提取公因式法分解因式即可.
【详解】
n(n﹣2)+m(2﹣n)= n(n﹣2)-m(n-2)=(n﹣2)(n﹣m).
故答案为(n﹣2)(n﹣m).
本题考查了用提公因式法进行因式分解;一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
21、y=﹣1x
【解析】
试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:
∵正比例函数y=kx的图象经过点A(﹣1,1),
∴﹣k=1,即k=﹣1.
∴正比例函数的解析式为y=﹣1x.
22、 (3,3)
【解析】
根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.
【详解】
由题意可得如图所示的平面直角坐标系,
故点C的坐标为(3,3),
故答案为(3,3).
本题考查坐标确定位置,解题的关键是明确题意,建立合适的平面直角坐标系.
23、1
【解析】
分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.
【详解】
∵分式的值为0,
∴,
∴x=1.
故答案是:1.
考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.
二、解答题(本大题共3个小题,共30分)
24、(1)x
相关试卷
这是一份江苏省无锡市江阴市敔山湾实验学校2023-2024学年九上数学期末综合测试试题含答案,共7页。试卷主要包含了如图,点A的坐标为,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份江苏省江阴市敔山湾实验学校2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了在平面直角坐标系中,点等内容,欢迎下载使用。
这是一份江苏省江阴市敔山湾实验学校2023-2024学年八上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,9的算术平方根是,若,,则的值为,化简分式的结果是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)