江苏省江阴要塞中学2025届数学九年级第一学期开学达标检测试题【含答案】
展开
这是一份江苏省江阴要塞中学2025届数学九年级第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数(1)y=πx;(2)y=2x-1;(3) ;(4)y=x2-1中,是一次函数的有( )
A.4个B.3个C.2个D.1个
2、(4分)在直角坐标系中,点P(-3,3)到原点的距离是( )
A. B.3C. 3D.6
3、(4分)数据1、2、5、3、5、3、3的中位数是( )
A.1B.2C.3D.5
4、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.5环,方差分别为,,,,则射击成续最稳定的是( )
A.甲B.乙C.丙D.丁
5、(4分)如图,在边长为的菱形中,为上一点,,连接,若,则的长为( )
A.B.C.D.
6、(4分)已知一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为
A.B.C.D.
7、(4分)已知关于x的方程的解是正数,那么m的取值范围为( )
A.m>-6且m≠2B.m<6C.m>-6且m≠-4D.m<6且m≠-2
8、(4分)在一次数学测验中,一学习小组七人的成绩如表所示:
则这七人成绩的中位数是( )
A.22B.89C.92D.96
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简分式:=_____.
10、(4分)如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B的坐标是_____.
11、(4分)将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.
12、(4分)在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.
13、(4分)化简;÷(﹣1)=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点.
(1)求证:;
(2)当四边形AECF为菱形且时,求出该菱形的面积.
15、(8分)计算(1)(+)(﹣)
(2)2﹣6+3
16、(8分)王达和李力是八(2)班运动素质最好的两位同学,为了选出一名同学参加全校的体育运动大寒,班主任针对学校要测试的五个项目,对两位同学进行相应的测试(成绩:分),结果如下:
根据以上测试结果解答下列问题:
(1)补充完成下表:
(2)任选一个角度分析推选哪位同学参加学校的比赛比较合适?并说明理由;
(3)若按力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,推选得分同学参加比赛,请通过计算说明应推选哪位同学去参赛。
17、(10分)如图,已知直线l和l外一点P,用尺规作l的垂线,使它经过点P.(保留作图痕迹,不写作法)
18、(10分)如图,平面直角坐标系内有一△ABC,且点A(2,4),B(1,1),C(4,2).
(1)画出△ABC向下平移5个单位后的△A1B1C1;
(2)画出△A1B1C1先向左平移5个单位再作关于x轴对称的△A2B2C2,并直接写出点A2,B2的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,化简:__________.
20、(4分)某班的中考英语口语考试成绩如表:
则该班中考英语口语考试成绩的众数比中位数多_____分.
21、(4分)某商场利用“五一”开展促销活动:一次性购买某品牌服装件,每件仅售元,如果超过件,则超过部分可享受折优惠,顾客所付款(元)与所购服装件之间的函数解析式为__________.
22、(4分)如图,在平面直角坐标系中,正方形OA1B1C1,B1A2B2C2,B2A3B3C3,…的顶点B1,B2,B3,…在x轴上,顶点C1,C2,C3,…在直线y=kx+b上,若正方形OA1B1C1,B1A2B2C2的对角线OB1=2,B1B2=3,则点C3的纵坐标是______________.
23、(4分)如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.
二、解答题(本大题共3个小题,共30分)
24、(8分)端午节假期,某商场开展促销活动,活动规定:若购买不超过100元的商品,则按全额交费;若购买超过100元的商品,则超过100元的部分按8折交费.设商品全额为x元,交费为y元.
(1)写出y与x之间的函数关系式.
(2)某顾客在-一次消费中,向售货员交纳了300元,那么在这次消费中,该顾客购买的商品全额为多少元?
25、(10分)下面是小明化简的过程
解:= ①
= ②
=﹣ ③
(1)小明的解答是否正确?如有错误,错在第几步?
(2)求当x=时原代数式的值.
26、(12分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
一次函数解析式形如+b,据此可知(1)y=πx,(2)y=2x-1是一次函数,共有2个,
故选C
2、B
【解析】
根据勾股定理可求点P(-3,3)到原点的距离.
【详解】
解:点P(-3,3)到原点的距离为=3,
故选:B.
本题考查勾股定理,熟练掌握勾股定理是解题的关键.
3、C
【解析】
试题分析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为1,2,1,1,1,5,5,∴中位数是按从小到大排列后第4个数为:1.故选C.
4、D
【解析】
方差越大,则射击成绩的离散程度越大,稳定性也越小;方差越小,则射击成绩的离散程度越小,稳定性越好,由此即可判断.
【详解】
解:∵S甲2=0.54,S乙2=0.61,S丙2=0.60,S丁2=0.50,
∴丁的方差最小,成绩最稳定,
故选:D.
本题考查方差的意义,记住方差越小数据越稳定.
5、A
【解析】
在Rt△BCP中利用勾股定理求出PB,在Rt△ABP中利用勾股定理求出PA即可.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=AD=10,AB∥CD
∵PD=4,
∴PC=6,
∵PB⊥CD,
∴PB⊥AB,
∴∠CPB=∠ABP=90°,
在Rt△PCB中,∵∠CPB=90°,PC=6,BC=10,
∴PB= =8,
在Rt△ABP中,∵∠ABP=90°,AB=10,PB=8,
∴PA= =
故选:A
此题考查菱形的性质,勾股定理,解题关键在于求出PB.
6、B
【解析】
试题分析:∵一次函数y=kx+b经过点(3,0),
∴3k+b=0,
∴b=-3k.
将b=-3k代入k(x-4)-1b>0,
得k(x-4)-1×(-3k)>0,
去括号得:kx-4k+6k>0,
移项、合并同类项得:kx>-1k;
∵函数值y随x的增大而减小,
∴k<0;
将不等式两边同时除以k,得x<-1.
故选B.
考点:一次函数与一元一次不等式.
7、C
【解析】
先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.
【详解】
将分式方程转化为整式方程得:1x+m=3x-2
解得:x=m+2.
∵方程得解为正数,所以m+2>0,解得:m>-2.
∵分式的分母不能为0,
∴x-1≠0,
∴x≠1,即m+2≠1.
∴m≠-3.
故m>-2且m≠-3.
故选:C.
本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.
8、D
【解析】
根据中位数的定义求解即可.
【详解】
∵从小到大排列后,成绩排在第四位的是96分,
∴中位数是96.
故选D.
此题主要考查了中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-
【解析】
将分子变形为﹣(x﹣y),再约去分子、分母的公因式x﹣y即可得到结论.
【详解】
==﹣.
故答案为﹣.
本题主要考查分式的约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
10、(﹣1,0).
【解析】
根据点B与点A关于直线x=1对称确定点B的坐标即可.
【详解】
∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,
∴点A与点B关于直线x=1对称,
而对称轴是直线x=1,点A的坐标为(3,0),
∴点B的坐标是(﹣1,0).
故答案为(﹣1,0).
本题考查了二次函数的对称性,熟知二次函数的图象关于对称轴对称是解决问题的关键.
11、上 1
【解析】
根据“上加下减”的平移规律解答即可.
【详解】
解:将一次函数y=3x-1的图象沿y轴向上平移1个单位后,得到的图象对应的函数关系式为y=3x-1+1,
即y=3x,该函数图象经过原点.
故答案为上,1.
此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意直线平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.
12、2
【解析】
根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.
【详解】
作点E′和E关于BD对称.则连接AE′交BD于点P,
∵四边形ABCD是菱形,AB=4,E为AD中点,
∴点E′是CD的中点,
∴DE′=DC=×4=2,AE′⊥DC,
∴AE′=.
故答案为2.
此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.
13、-
【解析】
直接利用分式的混合运算法则即可得出.
【详解】
原式,
,
,
.
故答案为.
此题主要考查了分式的化简,正确掌握运算法则是解题关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)详见解析;(2)
【解析】
(1)根据平行四边形的性质和全等三角形的判定解答即可;
(2)根据菱形的性质和菱形的面积解答即可.
【详解】
(1)证明:∵平行四边形ABCD
∴,,
∵点E、F分别为BC、AD中点
∴,
∴
∴,
∴
(2)∵四边形AECF是菱形
∴CE=AE
BE=CE=AE=4
∵AB=4
∴AB=BE=AE=4,
过点A作AH⊥BC于H
AH=2
S菱形AECF=CE×AH=4×2=8.
考查了菱形的性质,全等三角形的判定与性质,根据平行四边形的性质和全等三角形的判定解答是解题的关键.
15、(1)2;(2)14
【解析】
(1)根据平方差公式可以解答本题;
(2)根据二次根式的加减法可以解答本题.
【详解】
解:(1)
=5﹣3
=2;
(2)
=
=.
本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
16、(1)80,80,80,40 (2)答案见解析 (3)李力
【解析】
(1)利用平均数的计算方法求出李力测试成绩的平均数,再求出中位数和众数,然后利用方差公式求出李力测试成绩的方差,填表即可;
(2)可以根据表中数据,从两人的平均数,中位数,众数,方差进行分析,可得出结果;
(3)根据已知力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,分别算出两人的综合分数,再比较大小即可得出去参加比赛的选手.
【详解】
(1)解:李力的平均成绩为:;
将5个数排序70,80,80,80,90,
最中间的数是80,
∴李力的测试成绩的中位数为80;
∵80出现了3次,是这组数据中出现次数最多的数,
∴这组数据的众数是80;
李力测试成绩的方差为:,
填表如下
(2)解:根据表中数据可知,两人的平均成绩相同,从中位数和众数看,李力的成绩比王达的成绩好,从方差看,李力测试成绩的方差比王达次数成绩的方差小,可知李力的成绩比王达的成绩稳定,因此应该推选李力参加比赛。
(3)解:∵按力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,
∴王达的成绩为:60×1+75×2+100×3+90×3+75×1=855;
李力的成绩为:70×1+90×2+80×3+80×3+80×1=910;
910>855
∴选李力去参加比赛.
本题考查了平均数,中位数,众数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数.方差是用来衡量一组数据波动大小的量.解题的关键是正确理解各概念的含义.
17、详见解析
【解析】
以P为圆心,以任意长为半径画弧,交直线l与于点M、N,再分别以点M、N为圆心,以大于MN长为半径画弧,两弧相交于点G、H,连接GH,直线GH即为所求.
【详解】
如图,直线GH即为所求.
本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答本题的关键.
18、 (1)见解析;(2)见解析,点A2(-3,1),B2(-4,4).
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用平移的性质再结合轴对称图形的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,点A2(-3,1),B2(-4,4).
此题主要考查了作图--轴对称变换,关键是正确确定组成图形的关键点关于x轴的对称点位置.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
解:∵0<a<1,
∴,
故答案为:1.
此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
20、3
【解析】
这组数出现次数最多的是3;∴这组数的众数是3.
∵共42人,∴中位数应是第23和第22人的平均数,位于最中间的数是2,2,
∴这组数的中位数是2.
∴该班中考英语口语考试成绩的众数比中位数多3﹣2=3分,
故答案为3.
【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
21、
【解析】
因为所购买的件数x≥3,所以顾客所付款y分成两部分,一部分是3×80=240,另一部分是(x-3)×80×0.8,让它们相加即可.
【详解】
解:∵x≥3,
∴y=3×80+(x-3)×80×0.8=64x+48(x≥3).
故答案是:.
此题主要考查利用一次函数解决实际问题,找到所求量的等量关系是解决问题的关键.
22、
【解析】
连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G.根据正方形的性质,由OB1=2,B1B2=3可求点C1,C2的坐标,将点C1,C2的坐标代入y=kx+b中,得到关于k与b的方程组,求出方程组的解得到k与b的值,从而求出直线解析式,设B2G=C3G=t,表示出C3的坐标,代入直线方程中列出关于t的方程,求出方程的解得到t的值,确定出C3的纵坐标.
【详解】
解:如图,连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,
∵四边形OA1B1C1,B1A2B2C2,B2A3B3C3都是正方形,OB1=2,B1B2=3,
∴OE=EC1=EB1=OB1=1,B1F=FC2=FB2=B1B2=,OF=OB1+B1F=,
∴C1(1,1),C2(,),
将点C1,C2的坐标代入y=kx+b中,
得:,解得:,
∴直线解析式为y=x+,
设B2G=C3G=t,则有C3坐标为(5+t,t),
代入直线解析式得:t=(5+t)+,
解得:t=,
∴点C3的纵坐标是.
故答案是.
此题考查了一次函数图象上点的坐标特征,正方形的性质,利用待定系数法求一次函数解析式,求出点C1,C2的坐标是解本题的关键.
23、AB=AD.
【解析】
由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.
【详解】
添加AB=AD,
∵OA=OC,OB=OD,
∴四边形ABCD为平行四边形,
∵AB=AD,
∴四边形ABCD是菱形,
故答案为:AB=AD.
此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)该顾客购买的商品全额为350元.
【解析】
(1)根据题意分段函数,即当自变量x≤100和x>100两种情况分别探索关系式,
(2)根据金额,判断符合哪个函数,代入求解即可.
【详解】
(1)
(2)由题意得,
解得.
答:该顾客购买的商品全额为350元.
考查根据实际问题求一次函数的关系式、分段函数关系式的探索,以及代入求值等知识,体会函数的意义.
25、(1)第①步(2)
【解析】
(1)根据分式的乘除法可以明确小明在哪一步出错了,从而可以解答本题;
(2)根据分式的乘除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
(1)小明的解答不正确,错在第①步;
(2)
=
=,
当x=时,原式=.
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
26、(1);(2);(3)P(,0).
【解析】
(1)把A的坐标代入即可求出结果;
(2)先把B的坐标代入得到B(4,1),把A和B的坐标,代入即可求得一次函数的解析式;
(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.
【详解】
(1)把A(1,4)代入得:m=4,
∴反比例函数的解析式为:;
(2)把B(4,n)代入得:n=1,∴B(4,1),把A(1,4),B(4,1)代入,得:,
∴,
∴一次函数的解析式为:;
(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),
∴直线AB′的解析式为:,当y=0时,x=,
∴P(,0).
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
78
89
96
100
人数
1
2
3
1
姓名
力量
速度
耐力
柔韧
灵敏
王达
60
75
100
90
75
李力
70
90
80
80
80
姓名
平均成绩(分)
中位数(分)
众数(分)
方差(分2)
王达
80
75
75
190
李力
考试成绩/分
30
29
28
27
26
学生数/人
3
15
13
6
3
姓名
平均成绩(分)
中位数(分)
众数(分)
方差(分2)
王达
80
75
75
190
李力
80
80
80
40
相关试卷
这是一份江苏省江阴市祝塘中学2024-2025学年九年级数学第一学期开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省江阴市要塞片2025届数学九上开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省江阴市初级中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。