江苏省靖江市城南新区中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】
展开这是一份江苏省靖江市城南新区中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )
A.点MB.点NC.点PD.点Q
2、(4分)某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有42名同学
B.该班学生这次考试成绩的众数是8
C.该班学生这次考试成绩的平均数是27
D.该班学生这次考试成绩的中位数是27分
3、(4分)下列方程中是一元二次方程的是( )
A.x2﹣1=0B.y=2x2+1C.x+ =0D.x2+y2=1
4、(4分)已知函数y=,则自变量x的取值范围是( )
A.﹣1<x<1B.x≥﹣1且x≠1C.x≥﹣1D.x≠1
5、(4分)如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是( )
A.△ABE≌△ACFB.点D在∠BAC的平分线上
C.△BDF≌△CDED.D是BE的中点
6、(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为
A.B.C.D.
7、(4分)计算:3x2y2=( ).
A.2xy2B.x2C.x3D.xy4
8、(4分)如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为( )
A.8B.9C.10D.11
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于一元二次方程的一个根为,则另一个根为__________.
10、(4分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为____.
11、(4分)若a+b=4,a﹣b=1,则(a+2)2﹣(b﹣2)2的值为_____.
12、(4分)计算:=_____________.
13、(4分)若一组数据2,,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,是的中线,是线段的中点,.
求证:四边形是等腰梯形.
15、(8分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射线BD为∠ABC的平分线,交AC于点D.动点P以每秒2个单位长度的速度从点B向终点C运动.作PE⊥BC交射线BD于点E.以PE为边向右作正方形PEFG.正方形PEFG与△BDC重叠部分图形的面积为S.
(1)求tan∠ABD的值.
(2)当点F落在AC边上时,求t的值.
(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,求S与t之间的函数关系式.
16、(8分)己知一次函数的图象过点,与y轴交于点B.求点B的坐标和k的值.
17、(10分)王达和李力是八(2)班运动素质最好的两位同学,为了选出一名同学参加全校的体育运动大寒,班主任针对学校要测试的五个项目,对两位同学进行相应的测试(成绩:分),结果如下:
根据以上测试结果解答下列问题:
(1)补充完成下表:
(2)任选一个角度分析推选哪位同学参加学校的比赛比较合适?并说明理由;
(3)若按力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,推选得分同学参加比赛,请通过计算说明应推选哪位同学去参赛。
18、(10分)如图,一次函数的图象与反比例函数的图象交于点和点.
(1)求,的值;
(2)根据图象判断,当不等式成立时,的取值范围是什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.
20、(4分)若,则的值为______.
21、(4分)如图,是六边形的一个内角.若,则的度数为________.
22、(4分)如图,直线y=kx+b与直线y=2x交于点P(1,m),则不等式2x
二、解答题(本大题共3个小题,共30分)
24、(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:
(1)观察与猜想y与x的函数关系,并说明理由.
(2)求日销售价定为30元时每日的销售利润.
25、(10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.、(1)求△AOB的面积;(2)求不等式kx+b﹣<0的解集(请直接写出答案).
26、(12分)化简分式()÷ ,并在 2,3,4,5 这四个数中取一个合适的数作为 a 的值代入求值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.
【详解】
解:连接OM,ON,OQ,OP,
∵MN、MQ的垂直平分线交于点O,
∴OM=ON=OQ,
∴M、N、Q在以点O为圆心的圆上,OP与ON的大小关系不能确定,
∴点P不一定在圆上.
故选C.
考点:点与圆的位置关系;线段垂直平分线的性质.
2、B
【解析】
根据众数,中位数,平均数的定义解答.
【详解】
解:该班共有6+5+5+8+7+7+4=42(人),
成绩27分的有8人,人数最多,众数为27;
该班学生这次考试成绩的平均数是=(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,
该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,
故选:B.
本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
3、A
【解析】
解:A.x2﹣1=0是一元二次方程,故A正确;
B.y=2x2+1是二次函数,故B错误;
C.x+=0是分式方程,故C错误;
D.x2+y2=1中含有两个未知数,故D错误.
故选A.
4、B
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.
【详解】
解:根据题意得:,
解得:x≥-1且x≠1.
故选B.
点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
5、D
【解析】
根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.
【详解】
∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A
∴△ABE≌△ACF(AAS),正确;
∵△ABE≌△ACF,AB=AC
∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
∴DF=DE故点D在∠BAC的平分线上,正确;
∵△ABE≌△ACF,AB=AC
∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
∴△BDF≌△CDE(AAS),正确;
D. 无法判定,错误;
故选D.
6、B
【解析】
【分析】直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【详解】,,
,
▱ABCD的对角线AC与BD相交于点O,E是边CD的中点,
是的中位线,
,
,
故选B.
【点睛】本题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.
7、C
【解析】
根据分式除法法则先将除法化为乘法,再进行计算即可.
【详解】
原式.
故选:C.
本题考查分式的乘除法,明确运算法则是解题关键.
8、C
【解析】
试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.
解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,
在△ABC和△CED中,
,
∴△ACB≌△CDE(AAS),
∴AB=CE,BC=DE;
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
即Sb=Sa+Sc=1+9=10,
∴b的面积为10,
故选C.
考点:全等三角形的判定与性质;勾股定理;正方形的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
利用根与系数的关系可得出方程的两根之积为-1,结合方程的一个根为-1,可求出方程的另一个根,此题得解.
【详解】
∵a=1,b=m,c=-1,
∴x1•x2==-1.
∵关于x一元二次方程x2+mx-1=0的一个根为x=-1,
∴另一个根为-1÷(-1)=1.
故答案为:1.
此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.
10、1
【解析】
由点A的坐标利用待定系数法即可求出正比例函数的解析式,再利用一次函数图象上点的坐标特征可求出m的值,此题得解.
【详解】
设正比例函数的解析式为y=kx(k≠0),
∵该正比例函数图象经过点A(3,﹣6),
∴﹣6=3k,解得:k=﹣1,
∴正比例函数的解析式为y=﹣1x.
∵点B(m,﹣4)在正比例函数y=﹣1x的图象上,
∴﹣4=﹣1m,
解得:m=1.
故答案为:1.
本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
11、1
【解析】
先利用平方差公式:化简所求式子,再将已知式子的值代入求解即可.
【详解】
将代入得:原式
故答案为:1.
本题考查了利用平方差公式进行化简求值,熟记公式是解题关键.另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握.
12、
【解析】
根据积的乘方和整式的运算法则,先算乘方再算乘法即可得出答案
【详解】
本题考查的是积的乘方和整式的运算法则,能够准确计算是解题的关键。
13、3,3,0.4
【解析】
根据平均数求出x=3,再根据中位数、众数、方差的定义解答.
【详解】
∵一组数据2,,4,3,3的平均数是3,
∴x=,
将数据由小到大重新排列为:2、3、3、3、4,
∴这组数据的中位数是3,众数是3,
方差为,
故答案为:3、3、0.4.
此题考查数据的分析:利用平均数求某一个数,求一组数据的中位数、众数和方差,正确掌握计算平均数、中位数、众数及方差的方法是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
先证明△ADE≌△MDC得出AE=MC,证出AE=MB,得出四边形AEBM是平行四边形,证出BE=AC,而AE∥BC,BE与AC不平行,即可得出结论.
【详解】
证明:∵
∴.
∵,
∴.
∴.
∵,
∴.
∴四边形是平行四边形.
∴.
而,
∴.
∵,与不平行,
∴四边形是梯形.
∴梯形是等腰梯形.
本题考查了等腰梯形的判定、平行四边形的判定、全等三角形的判定与性质;熟练掌握等腰梯形的判定,证明三角形全等是解题的关键.
15、(1)tan∠ABD=;(2);(3)①当时,;②当时,;③当时,.
【解析】
(1)过点D作DH⊥BC于点H,可得△ABD≌△HBD,所以CH=BC-AB=4.再由三角形相似即可求出DH=AD=3.根据三角函数定义即可解题.
(2)由(1)得BP=2PE,所以BP=2t,PE=PG=EF=FG=t,当点F落在AC边上时,FG=CG,即可得到方程求出t.
(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,分三种情况分别求出S与t之间的函数关系式,①当时,F点在三角形内部或边上,②当时,如图:E点在三角形内部,F点在外部,此时重叠部分图形的面积S=S正方形-S△FMN,③当时,重叠部分面积为梯形MPGN面积,
【详解】
解:(1)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1
根据勾股定理得BC=10
过点D作DH⊥BC于点H
∵△ABD≌△HBD,
∴BH=AH=6,DH=AD,
∴CH=4,
∵△ABC∽△HDC,
∴,
∴,
∴DH=AD=3,
∴tan∠ABD==,
(2)由(1)可知BP=2PE,依题意得:BP=2t,PE=PG=EF=FG=t,CG=10-3t,
当点F落在AC边上时,FG=CG,
即,
,
(3)①当时,F点在三角形内部或边上,正方形PEFG在△BDC内部,
此时重叠部分图形的面积为正方形面积:,
②当时,如图:E点在三角形内部,F点在外部,
∵GC=10-3t,NG=CG=(10-3t),FN=t-(10-3t),FM= ,
此时重叠部分图形的面积S=S正方形-S△FMN
,
③当时,重叠部分面积为梯形MPGN面积,如图:
∵GC=10-3t,NG=CG=(10-3t),PC=10-2t,PM=,
∴,
综上所述:当时,;当时,;当时,.
本题考查三角形综合题,涉及了矩形的性质、勾股定理、相似三角形的性质和判定、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.
16、点B的坐标为,
【解析】
根据一次函数的性质,与y轴交于点B,即,得解;将A坐标代入解析式即可得解.
【详解】
当时,,点B的坐标为
将点A的对应值,代入得,∴
此题主要考查一次函数的性质,熟练掌握,即可解题.
17、(1)80,80,80,40 (2)答案见解析 (3)李力
【解析】
(1)利用平均数的计算方法求出李力测试成绩的平均数,再求出中位数和众数,然后利用方差公式求出李力测试成绩的方差,填表即可;
(2)可以根据表中数据,从两人的平均数,中位数,众数,方差进行分析,可得出结果;
(3)根据已知力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,分别算出两人的综合分数,再比较大小即可得出去参加比赛的选手.
【详解】
(1)解:李力的平均成绩为:;
将5个数排序70,80,80,80,90,
最中间的数是80,
∴李力的测试成绩的中位数为80;
∵80出现了3次,是这组数据中出现次数最多的数,
∴这组数据的众数是80;
李力测试成绩的方差为:,
填表如下
(2)解:根据表中数据可知,两人的平均成绩相同,从中位数和众数看,李力的成绩比王达的成绩好,从方差看,李力测试成绩的方差比王达次数成绩的方差小,可知李力的成绩比王达的成绩稳定,因此应该推选李力参加比赛。
(3)解:∵按力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,
∴王达的成绩为:60×1+75×2+100×3+90×3+75×1=855;
李力的成绩为:70×1+90×2+80×3+80×3+80×1=910;
910>855
∴选李力去参加比赛.
本题考查了平均数,中位数,众数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数.方差是用来衡量一组数据波动大小的量.解题的关键是正确理解各概念的含义.
18、(1), ;(2)或.
【解析】
(1)利用待定系数法即可解决问题;
(2)观察图象写出反比例函数图象在一次函数的图象上方的x的取值范围即可.
【详解】
解:(1)把A(1,1)代入中,得到m=1,
∴反比例函数的解析式为y=,
把B(n,1)代入y=中,得到n=1;
(2)∵A(1,1),B(1,1),
观察图象可知:不等式成立时,x的取值范围是0<x≤1或x≥1.
本题考查一次函数与反比例函数的交点问题,解题的关键是灵活应用待定系数法确定函数解析式,学会利用图象法解决取值范围问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x<1
【解析】
观察图象即可得不等式kx<-x+3的解集是x<1.
点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.
20、.
【解析】
由可得,化简即可得到,再计算,即可求得=.
【详解】
∵,
∴,
∴,
∴,
∴=.
故答案为:.
本题考查了完全平方公式的变形应用,正确求得是解决问题的关键.
21、
【解析】
根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E =120°代入,即可求出答案.
【详解】
解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720°
∵∠E=120°
∴∠A+∠B+∠C+∠D+∠F=720°-120°=600°
故答案为600°
本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°.
22、x<1
【解析】
根据两直线的交点坐标和函数的图象即可求出答案.
【详解】
∵直线y1=kx+b与直线y2=2x交于点P(1,m),
∴不等式2x<kx+b的解集是x<1,
故答案是:x<1.
考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
23、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半解答即可.
解:∵直角三角形斜边上的中线长为6,
∴这个直角三角形的斜边长为1.
考查的是直角三角形的性质,即直角三角形斜边上的中线等于斜边的一半.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-x+40;理由见解析;(2)200元.
【解析】
(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;
(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.
【详解】
解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b,
则有,
解得:,
∴y与x的函数关系式是y=-x+40;
(2)当x=30时,y=-30+40=10,
每日的销售利润=(30-10)×10=200元.
本题考查了待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.
25、(1);(2)﹣4<x<0或x>1
【解析】
(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(2)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
【详解】
解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),
∴m=1×(﹣4)=﹣4, ∴y=﹣,
将x=﹣4,y=n代入反比例解析式得:n=1,
∴A(﹣4,1),
∴将A与B坐标代入一次函数解析式得:k+b=-4,-4k+b=1,
解得:k=-1,b=-3, ∴y=﹣x﹣3;
在直线y=﹣x﹣3中,当y=0时,x=﹣3,
∴C(﹣3,0),即OC=3,
∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;
(2)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.
本题考查待定系数法求一次函数解析式;待定系数法求反比例函数解析式;反比例函数与图形的面积计算;反比例函数与一次函数的结合交点问题求x的范围,学生们熟练掌握解析一次函数和反比例函数表达式的方法同时观察图象是解题的关键.
26、,取代入,原式.
【解析】
先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义a的值代入计算可得.
【详解】
解:原式=·
=·
=·
=a+3,
∵a≠﹣3,2,3,
∴a=4或5,
当a=4时,原式=4+3=7;
当a=5时,原式=5+3=8.
本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.
题号
一
二
三
四
五
总分
得分
成绩(分)
24
25
26
27
28
29
30
人数(人)
6
5
5
8
7
7
4
姓名
力量
速度
耐力
柔韧
灵敏
王达
60
75
100
90
75
李力
70
90
80
80
80
姓名
平均成绩(分)
中位数(分)
众数(分)
方差(分2)
王达
80
75
75
190
李力
X(元)
15
20
25
…
Y(件)
25
20
15
…
姓名
平均成绩(分)
中位数(分)
众数(分)
方差(分2)
王达
80
75
75
190
李力
80
80
80
40
相关试卷
这是一份江苏省连云港市赣榆实验中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省苏州市新区一中学数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省靖江市城南新区中学九上数学开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。