江苏省连云港市赣榆县2024年九年级数学第一学期开学质量跟踪监视试题【含答案】
展开
这是一份江苏省连云港市赣榆县2024年九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知正多边形的一个内角是140°,则这个正多边形的边数是( )
A.九边形B.八边形C.七边形D.六边形
2、(4分)下列各点中,位于第四象限的点是( )
A.(3,4)B.(3,4)C.(3,4)D.(3,4)
3、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是( )
A.k≠2B.k>2C.0<k<2D.0≤k<2
4、(4分)下列运算正确的是( )
A.=B.=a+1C.+=0D.﹣=
5、(4分)小明研究二次函数(为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x轴的直线上;②该二次函数图象的顶点与x轴的两个交点构成等腰直角三角形;③当时,y随x的增大而增大,则m的取值范围为;④点与点在函数图象上,若,,则.其中正确结论的个数为( )
A.1B.2C.3D.4
6、(4分)如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,那么折叠△AED的面积为( )cm2
A.16.9B.14.4C.13.5D.11.8
7、(4分)观察下列等式:,,,,,…,那么的个位数字是( )
A.0B.1C.4D.5
8、(4分)关于的不等式组的解集为,那么的取值范围为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.
10、(4分)若一个多边形的内角和是900º,则这个多边形是 边形.
11、(4分)如果一组数据:5,,9,4的平均数为6,那么的值是_________
12、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点,连接、.则下列结论:①:②;③:④.其中正确的有_(把你认为正确结论的序号都填上)
13、(4分)已知一次函数与的图象交于点P,则点P的坐标为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:
(1)上表中的a= ;
(2)“摸到白球”的概率的估计值是 (精确到0.1)
(3)试估算口袋中黑、白两种颜色的球各有多少个?
15、(8分)在平面直角坐标系中,一次函数的图象经过点.
(1)当时,且正比例函数的图象经过点.
①若,求的取值范围;
②若一次函数的图象为,且不能围成三角形,求的值;
(2)若直线与轴交于点,且,求的数量关系.
16、(8分)如图1,矩形的顶点、分别在轴与轴上,且点,点,点为矩形、两边上的一个点.
(1)当点与重合时,求直线的函数解析式;
(2)如图②,当在边上,将矩形沿着折叠,点对应点恰落在边上,求此时点的坐标.
(3)是否存在使为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.
17、(10分)网店店主小李进了一批某种商品,每件进价10元.预售一段时间后发现:每天销售量(件)与售价(元/件)之间成一次函数关系:.
(1)小李想每天赚取利润150元,又要使所进的货尽快脱手,则售价定为多少合适?
(2)小李想每天赚取利润300元,这个想法能实现吗?为什么?
18、(10分)如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.
求证:∠DAF=∠BCE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若代数式的值等于0,则x=_____.
20、(4分)如图所示,将长方形纸片ABCD进行折叠,∠FEH=70°,则∠BHE=_______.
21、(4分)两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.
22、(4分)如图,在矩形中,对角线,交于点,要使矩形成为正方形,应添加的一个条件是______.
23、(4分)若,则=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(1);(2)sin30°+cs30°•tan60°.
25、(10分)如图,已知二次函数()的图象与轴交于两点(点在点的左侧),与轴交于点,且,,顶点为.
(1)求二次函数的解析式;
(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;
(3)探索:线段上是否存在点,使为直角三角形?如果存在,求出点的坐标;如果不存在,请说明理由.
26、(12分)解答下列各题:
(1)计算:;
(2)当时,求代数式的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据正多边形每个内角度数的求算公式: 建立方程求解即可.
【详解】
正多边形每个内角的度数求算公式:,建立方程得:
解得:
故答案选:A
本题考查正多边形的内角与边数,掌握相关的公式是解题关键.
2、A
【解析】
根据平面直角坐标系中点的坐标特征解答即可,第四象限内点的横坐标大于0,纵坐标小于0.
【详解】
∵第四象限内点的横坐标大于0,纵坐标小于0,
∴(3,4) 位于第四象限.
故选A.
本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.
3、C
【解析】
由一次函数经过的象限确定其图象的增减性,然后确定k的取值范围即可.
【详解】
∵一次函数y=(k-2)x+k的图象经过第一、二、四象限,
∴k-2<0且k>0;
∴0<k<2,
故选C.
考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
4、C
【解析】
根据分式的性质进行判断,去掉带有负号的括号,每一项都应变号;分子与分母同除以一个不为0的数,分式的值不变.
【详解】
A. =,故错误;
B. =a+,故错误;
C. +=-=0,故正确;
D. ﹣=,故错误;
故选C
本题考查了分式的加减法则以及分式的基本性质,正确理解分式的基本性质是关键.
5、D
【解析】
根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.
【详解】
解: 二次函数=-(x-m)1+1(m为常数)
①∵顶点坐标为(m,1)且当x=m时,y=1
∴这个函数图象的顶点始终在直线y=1上
故结论①正确;
②令y=0,得-(x-m)1+1=0
解得:x=m-1,x=m+1
∴抛物线与x轴的两个交点坐标为A(m-1,0),B(m+1,0)
则AB=1
∵顶点P坐标为(m,1)
∴PA=PB=,
∴
∴是等腰直角三角形
∴函数图象的顶点与x轴的两个交点构成等腰直角三角形
故结论②正确;
③当-1<x<1时,y随x的增大而增大,且-1<0
∴m的取值范围为m≥1.
故结论③正确;
④∵x1+x1>1m
∴>m
∵二次函数y=-(x-m)1+1(m为常数)的对称轴为直线x=m
∴点A离对称轴的距离小于点B离对称轴的距离
∵x1<x1,且-1<0
∴y1>y1
故结论④正确.
故选:D.
本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.
6、A
【解析】
根据矩形的性质及三角形的面积公式求得BF=12cm,在Rt△ABF中,由勾股定理可得,AF=13cm;由折叠的性质可得AD=AF,DE=EF,设DE=xcm,则EC=(5-x)cm,EF=xcm,FC =1cm.在Rt△ECF中,由勾股定理可得方程(5-x)2 +12 =x2 ,解方程求得x的值,再由三角形的面积公式即可求得△AED的面积.
【详解】
∵四边形ABCD是矩形,
∴∠B=∠C=90°,AB=CD=5cm,BC=AD,
∵△ABF的面积为30cm2,
∴BF=12cm,
在Rt△ABF中,由勾股定理可得,AF=(cm);
由折叠的性质可得AD=AF,DE=EF,
∴BC=AD=13cm,
设DE=xcm,则EC=(5-x)cm,EF=xcm,FC=BC-BF=13-12=1(cm).
在Rt△ECF中,由勾股定理可得,(5-x)2 +12 =x2 ,
解得x=,
即DE=cm,
∴△AED的面积为:AD×DE=(cm2)
故选A.
本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.
7、A
【解析】
由题中可以看出,故个位的数字是以10为周期变化的,用2019÷10,计算一下看看有多少个周期即可.
【详解】
以2为指数的幂的末位数字是1,4,9,6,5,6,9,4,1,0依次循环的,2019÷10=201…9,
(1+4+9+6+5+6+9+4+1+0)×201+(1+4+9+6+5+6+9+4+1)
=45×201+20
=9045+45
=9090,
∴的个位数字是0
故选A.
此题主要考查了找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到以2为指数的末位数字的循环规律.
8、A
【解析】
求出每个不等式的解集,找出不等式组的解集,根据已知即可得出x>a,求出即可.
【详解】
由①得:x>4,
由②得:x>a,
不等式组的解集是
∴
所以A选项是正确的.
本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式组的解集x>4得到x>a是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>﹣3 x≤﹣
【解析】
当x>−3时,2x+6>0;
解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.
故答案为x>−3;x⩽﹣.
10、七
【解析】
根据多边形的内角和公式,列式求解即可.
【详解】
设这个多边形是边形,根据题意得,
,
解得.
故答案为.
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
11、6
【解析】
根据平均数的定义,即可求解.
【详解】
根据题意,得
解得
故答案为6.
此题主要考查平均数的求解,熟练掌握,即可解题.
12、①②③④
【解析】
根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;由①和翻折的性质得出△ABG≌△AFG,△ADE≌△AFE,即可得出;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF.
【详解】
解:①正确,∵四边形ABCD是正方形,将△ADE沿AE对折至△AFE,
∴AB=AD=AF,
在△ABG与△AFG中,;
△ABG≌△AFG(SAS);
②正确,
∵由①得△ABG≌△AFG,
又∵折叠的性质,△ADE≌△AFE,
∴∠BAG =∠FAG,∠DAE=∠EAF,
∴∠EAG=∠FAG+∠EAF=90°×=45°;
③正确,
∵EF=DE=CD=2,
设BG=FG=x,则CG=6-x,
在直角△ECG中,
根据勾股定理,得(6-x)2+42=(x+2)2,
解得x=3,
∴BG=3=6-3=GC;
④正确,
∵CG=BG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF,
又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.
13、 (3,0)
【解析】
解方程组,可得交点坐标.
【详解】
解方程组
,
得
,
所以,P(3,0)
故答案为(3,0)
本题考核知识点:求函数图象的交点. 解题关键点:解方程组求交点坐标.
三、解答题(本大题共5个小题,共48分)
14、 (1) 0.58;(2) 0.6;(3)白球12(个),黑球8 (个)
【解析】
(1)利用频率=频数÷样本容量直接求解即可;
(2)根据统计数据,当n很大时,摸到白球的频率接近0.60;
(3)根据利用频率估计概率,可估计摸到白球的概率为0.60,然后利用概率公式计算白球的个数.
【详解】
(1)a= =0.58,
故答案为:0.58;
(2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,
故答案为:0.60;
(3)由(2)摸到白球的概率估计值为0.60,
所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20−12=8(个).
答:黑球8个,白球12个.
本题考查利用频率估计概率,事件A发生的频率等于事件A出现的次数除以实验总次数;在实验次数非常大时,事件A发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.
15、(1)①;②的值为或1或;(2).
【解析】
(1)用待定系数法求出B点坐标,再求得正比例函数解析式,①由函数值的大小关系列出x的不等式,便可求得x的取值范围;②当l3过l1与l2的交点和l3与l1或l2平行时,l1,l2,l3不能围成三角形,由此求出k3;
(2)根据题意求得k1=-2,则y1=-2x+4m,代入(n,0),即可得到m,n的数量关系.
【详解】
解:(1)依题意,得:,
图象经过点,
所以,,
解得:
所以,,
正比例函数的图象经过点,
所以,,解得:,
所以,,。
①若,则,
解得,;
②若,,不能围成三角形,则或,或经过与的交点,
∵为:,为,
解,解得,
∴交点,
代入得,,
解得,
∴的值为或1或;
(2)∵一次函数的图象经过点,
∴①
直线与轴交于点,
∴②
∴①×2+②得,,
∵,
∴,
∴一次函数为,
∵经过
∴,
∴.
本题考查了一次函数和一元一次不等式,一次函数的图象以及一次函数的性质,明确不能构成三角形的三种情况是解题的关键.
16、(1)y=x+2;(2)(,10);(3)存在, P坐标为(6,6)或(6,2+2)或(6,10-2).
【解析】
(1)设直线DP解析式为y=kx+b,将D与C坐标代入求出k与b的值,即可确定出解析式;
(2)当点B的对应点B′恰好落在AC边上时,根据勾股定理列方程即可求出此时P坐标;
(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
【详解】
解:(1)∵C(6,10),D(0,2),
设此时直线DP解析式为y=kx+b,
把D(0,2),C(6,10)分别代入,得
,
解得
则此时直线DP解析式为y=x+2;
(2)设P(m,10),则PB=PB′=m,如图2,
∵OB′=OB=10,OA=6,
∴AB′==8,
∴B′C=10-8=2,
∵PC=6-m,
∴m2=22+(6-m)2,解得m=
则此时点P的坐标是(,10);
(3)存在,理由为:
若△BDP为等腰三角形,分三种情况考虑:如图3,
①当BD=BP1=OB-OD=10-2=8,
在Rt△BCP1中,BP1=8,BC=6,
根据勾股定理得:CP1=,
∴AP1=10-2,即P1(6,10-2);
②当BP2=DP2时,此时P2(6,6);
③当DB=DP3=8时,
在Rt△DEP3中,DE=6,
根据勾股定理得:P3E=,
∴AP3=AE+EP3=2+2,即P3(6,2+2),
综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10-2).
此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.
17、(1)15;(2),不能实现,见解析.
【解析】
(1)根据销售量与售价之间的关系,结合利润=(定价−进价)×销售量,从而列出方程;
(2)利用利润=(定价−进价)×销售量列出方程,判断出方程无解即可.
【详解】
解:(1)由题意得:即,
解得:,,
∵要使所进的货尽快脱手,
∴,
答:售价定为15元合适;
(2)由题意得:,
整理,得x2−41x+451=1.
∵△=1611−1811=−211<1,
∴该方程无实数解,
∴不能完成任务.
本题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
18、详见解析
【解析】
只要证明△ADF≌△CBE即可解决问题.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADB=∠CBD,
∵DF=BE,
∴△ADF≌△CBE,
∴∠DAF=∠BCE.
本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
由分式的值为零的条件得x2-5x+6=0,2x-6≠0,
由x2-5x+6=0,得x=2或x=3,
由2x-6≠0,得x≠3,
∴x=2.
20、70°
【解析】
由折叠的性质可得∠DEH=∠FEH=70°,再根据两直线平行,内错角相等即可求得答案.
【详解】
由题意得∠DEH=∠FEH=70°,
∵AD//BC,
∴∠BHE=∠DEH=70°,
故答案为:70°.
本题考查了折叠的性质,平行线的性质,熟练掌握折叠的性质以及平行线的性质是解题的关键.
21、2
【解析】
两个面积相等的正方形无论它们各自位置如何,当其中一个正方形的顶点与另一个正方形对角线的交点重合时,此时的重合部分面积总是等于其中一个正方形面积的四分之一,据此求解即可.
【详解】
∵无论正方形位置关系如何,其重合部分面积不变,仍然等于其中一个正方形面积的四分之一,
∴重合部分面积=.
故答案为:2.
本题主要考查了正方形性质,熟练掌握相关概念是解题关键.
22、(答案不唯一)
【解析】
根据正方形的判定添加条件即可.
【详解】
解:添加的条件可以是AB=BC.
理由如下:
∵四边形ABCD是矩形,AB=BC,
∴四边形ABCD是正方形.
故答案为:AB=BC(答案不唯一).
本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.
23、1
【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
【详解】
∵
∴
∴
∴
故答案为1.
本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)2
【解析】
试题分析:(1)根据二次根式的乘除法法则计算即可;
(2)根据特殊角的锐角三角函数值计算即可.
解:(1)原式;
(2)原式.
考点:实数的运算
点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.
25、(1);(2)的取值范围是;(3)符合条件的点的坐标为
【解析】
(1)将,代入即可进行求解;
(2)先求出二次函数的顶点坐标,令,得,,得到,根据,的坐标求出直线的解析式,得到,,再根据梯形的面积公式列出S的关系式;
(3)先求出,根据直角三角形的性质分类讨论即可求解.
【详解】
解(1)将,代入中
∴,
(2),所以
令,得,,所以
设直线的解析式为,将,代入,得
,得,所以
所以,
的取值范围是
(3)由
∴
①以为直角顶点
,舍去
②以为直角顶点
,所以
③以为直角顶点
,
,,无解
综上,符合条件的点的坐标为
此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、待定系数法确定函数关系式及直角三角形勾股定理的性质,注意用分类讨论方法.
26、(1)(2)1.
【解析】
(1)根据实数的运算法则即可化简;
(2)根据整式的运算法则进行化简即可求解.
【详解】
解:(1)原式.
(2)原式,将代入得
此题主要考查实数的运算,解题的关键是熟知实数的运算法则与整式的运算.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份江苏省连云港市赣榆实验中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北荆门2024年数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省镇江市五校数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。