终身会员
搜索
    上传资料 赚现金
    江苏省南京市名校2025届九上数学开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    江苏省南京市名校2025届九上数学开学达标检测模拟试题【含答案】01
    江苏省南京市名校2025届九上数学开学达标检测模拟试题【含答案】02
    江苏省南京市名校2025届九上数学开学达标检测模拟试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南京市名校2025届九上数学开学达标检测模拟试题【含答案】

    展开
    这是一份江苏省南京市名校2025届九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)用配方法解方程配方正确的是( )
    A.B.C.D.
    2、(4分)在平行四边形ABCD中,已知,,则它的周长为( )
    A.8B.10C.14D.16
    3、(4分)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了3次才停止,则x的取值范围是( )
    A.7<x≤11B.7≤x<11
    C.7<x<11D.7≤x≤11
    4、(4分)若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的
    A.2倍 B.3倍 C.4倍 D.5倍
    5、(4分)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
    A.B.3C.1D.
    6、(4分)如图,在一次实践活动课上,小明为了测量池塘B、C两点间的距离,他先在池塘的一侧选定一点A,然后测量出AB、AC的中点D、E,且DE=10m,于是可以计算出池塘B、C两点间的距离是( )
    A.5mB.10mC.15mD.20m
    7、(4分)下列各组数中能作为直角三角形的三边长的是( ).
    A.1,,1B.2,3,4C.4,5,6D.8,13,5
    8、(4分)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(-4,0);③m与n满足m=1n-1;④当x>-1时,nx+4n>-x+m,其中正确结论的个数是( )
    A.1个B.1个C.3个D.4个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,边长为的正方形和边长为的正方形排放在一起,和分别是两个正方形的对称中心,则的面积为________.
    10、(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.
    11、(4分)评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试90分,作业95分,课堂参与92分,则他的数学期末成绩为_____.
    12、(4分)若方程的两根互为相反数,则________.
    13、(4分)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=_______度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)再读教材:
    宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)
    第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.
    第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.
    第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,
    第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,
    问题解决:
    (1)图③中AB=________(保留根号);
    (2)如图③,判断四边形 BADQ的形状,并说明理由;
    (3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.
    (4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.
    15、(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
    (1)求一次函数y=kx+b的解析式;
    (2)若点D在y轴负半轴上,且满足S△COD═S△BOC,请直接写出点D的坐标.
    16、(8分)朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级、班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩满分为100分如图所示.
    根据图示填写表格;
    结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
    如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.
    17、(10分)用适当的方法解下列方程:(2x-1)(x+3)=1.
    18、(10分)如图,梯形ABCD中,AD∥BC,点M是BC的中点,且MA=MD.
    求证:四边形ABCD是等腰梯形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.
    20、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)
    21、(4分)如图,在中,,,,,分别为,,的中点,,则的长度为__.
    22、(4分)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.
    23、(4分)若解分式方程产生增根,则m=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防局迅速派出快艇追赶(如图1).图2中、分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.
    (1)求、的函数解析式;
    (2)当逃到离海岸12海里的公海时,将无法对其进行检查.照此速度,能否在逃入公海前将其拦截?若能,请求出此时离海岸的距离;若不能,请说明理由.

    25、(10分)(1)计算:
    (2)化简
    26、(12分)《九章算术》“勾股”章有一题:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”译文为:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离三尺,问原处还有多高的竹子?
    请解答上述问题.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.
    【详解】
    解:,

    ∴,

    故选:.
    此题考查配方法的一般步骤:
    ①把常数项移到等号的右边;
    ②把二次项的系数化为1;
    ③等式两边同时加上一次项系数一半的平方.
    选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    2、D
    【解析】
    根据“平行四边形的对边相等”结合已知条件进行分析解答即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD=5,AD=BC=3,
    ∴平行四边形ABCD的周长=AB+BC+CD+AD=5+3+5+3=16
    故选D.
    本题考查 “平行四边形的对边相等”是解答本题的关键.
    3、A
    【解析】
    根据运算程序,前两次运算结果小于等于35,第三次运算结果大于35列出不等式组,然后求解即可.
    【详解】
    依题意,得:,
    解得7<x≤1.
    故选A.
    本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.
    4、A
    【解析】分析:根据勾股定理知直角三角形的三边满足a2+b2=c2,当直角边扩大2倍依然满足勾股定理:(2a)2+(2b)2=(2c)2,由此确定斜边扩大的倍数.
    详解:直角三角形的三边满足勾股定理:a2+b2=c2,如果两直角边扩大为原来的2倍,则(2a)2+(2b)2=(2c)2,所以斜边扩大为原来的2倍.
    故选A.
    点睛:此题属于勾股定理的应用,勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方,当题目中出现直角三角形,常使用勾股定理进行求解,这个定理在几何的计算问题中是经常用到的,尤其是线段的长度以及边的关系,请同学们熟记并且能熟练地运用它.
    5、A
    【解析】
    首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
    【详解】
    ∵AB=3,AD=4,∴DC=3
    ∴根据勾股定理得AC=5
    根据折叠可得:△DEC≌△D′EC,
    ∴D′C=DC=3,DE=D′E
    设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
    在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
    解得:x=
    故选A.
    6、D
    【解析】
    根据三角形中位线定理可得到BC=2DE,可得到答案.
    【详解】
    ∵D、E分别为AB、AC的中点,
    ∴DE为△ABC的中位线,
    ∴BC=2DE=20m,
    故选D.
    本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.
    7、A
    【解析】
    根据勾股定理的逆定理对各选项进行逐一分析即可.
    【详解】
    A选项:,故可以构成直角三角形;
    B选项:,故不能构成直角三角形;
    C选项:,故不能构成直角三角形;
    D选项:,故不能构成直角三角形;
    故选:A.
    考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
    8、D
    【解析】
    ①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;
    ②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;
    ③由整理即可判断结论③正确;
    ④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.
    【详解】
    解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;
    ∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,
    故结论①正确;
    ②将x=-4代入y=nx+4n,得y=-4n+4n=0,
    ∴直线y=nx+4n一定经过点(-4,0).
    故结论②正确;
    ③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,
    ∴当x=-1时,y=1+m=-1n+4n,
    ∴m=1n-1.
    故结论③正确;
    ④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,
    ∴当x>-1时,nx+4n>-x+m,
    故结论④正确.
    故选:D.
    本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    由O1和O2分别是两个正方形的对称中心,可求得BO1,BO2的长,易证得∠O1BO2是直角,继而求得答案.
    【详解】
    解:∵O1和O2分别是这两个正方形的中心,
    ∴BO1=×6=3,BO2=×8=4,∠O1BC=∠O2BC=45°,
    ∴∠O1BO2=∠O1BC+∠O2BC=90°,
    ∴阴影部分的面积=×4×3=12.
    故答案是:12.
    本题考查的是正方形的综合运用,熟练掌握对称中心是解题的关键.
    10、1
    【解析】
    先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=1,即得平移距离.
    【详解】
    解:在Rt△ABC中,∵∠ABC=30°,
    ∴AC=AB=5,
    ∵△ABC沿CB向右平移得到△DEF,
    ∴AD=BE,ADBE,
    ∴四边形ABED为平行四边形,
    ∵四边形ABED的面积等于20,
    ∴AC•BE=20,即5BE=20,
    ∴BE=1,即平移距离等于1.
    故答案为:1.
    本题考查了含30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.
    11、92
    【解析】
    因为数学期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.
    【详解】
    解:小明的数学期末成绩为 =92(分),
    故答案为:92分.
    本题考查加权平均数的概念.平均数等于所有数据的和除以数据的个数.
    12、
    【解析】
    根据一元二次方程根与系数的关系即可求出答案.
    【详解】
    ∵两根互为相反数,
    ∴根据韦达定理得:m² - 1 = 0,
    解得:m = 1 或 m = -1
    当 m = 1 时,方程是 x² + 1 = 0 没有实数根
    当 m = -1 时,方程是 x² - 1 = 0 有两个实数根
    所以 m = -1
    故答案为:-1
    本题考查一元二次方程根与系数的关系,x1+x2=,x1x2=,熟练掌握韦达定理并进行检验是否有实数根是解题关键.
    13、240°
    【解析】
    ∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°。
    ∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)见解析;(3) 见解析; (4) 见解析.
    【解析】
    分析:(1)由勾股定理计算即可;
    (2)根据菱形的判定方法即可判断;
    (3)根据黄金矩形的定义即可判断;
    (4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.
    详解:(1)如图3中.在Rt△ABC中,AB===.
    故答案为.
    (2)结论:四边形BADQ是菱形.理由如下:
    如图③中,∵四边形ACBF是矩形,∴BQ∥AD.
    ∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.
    (3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.

    ∵AD=.AN=AC=1,CD=AD﹣AC=﹣1.
    ∵BC=2,∴=,∴矩形BCDE是黄金矩形.
    ∵==,∴矩形MNDE是黄金矩形.
    (4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.

    长GH=﹣1,宽HE=3﹣.
    点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.
    15、(1)y=−x+4;(2)(0,−6)
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A. C的坐标,利用待定系数法即可求出k、b的值;
    (2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD═S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标。
    【详解】
    (1)当x=1时,y=3x=3,
    ∴点C的坐标为(1,3).
    将A(−2,6)、C(1,3)代入y=kx+b,
    得: ,
    解得: ,
    ∴一次函数y=kx+b的表达式为:y=−x+4;
    (2)当y=0时,有−x+4=0,
    解得:x=4,
    ∴点B的坐标为(4,0).
    设点D的坐标为(0,m)(m<0),
    ∵S△COD═S△BOC,即−m=××4×3,
    解得:m=−6,
    ∴点D的坐标为(0,−6).
    此题考查一次函数图象上点的坐标特点,待定系数法求一次函数解析式,两条直线相交或平行问题,解题关键在于把已知点代入解析式求出k,b的值
    16、(1)详见解析;(2)九班成绩好些;(3)九班的成绩更稳定,能胜出.
    【解析】
    由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;
    由平均数相等得前提下,中位数高的成绩好解答可得;
    分别计算两班成绩的方差,由方差小的成绩稳定解答.
    【详解】
    解:九班5位同学的成绩为:75、80、85、85、100,
    其中位数为85分;
    九班5位同学的成绩为:70、100、100、75、80,
    九班的平均数为分,其众数为100分,
    补全表格如下:
    九班成绩好些,
    两个班的平均数都相同,而九班的中位数高,
    在平均数相同的情况下,中位数高的九班成绩好些.
    九班的成绩更稳定,能胜出.
    分,
    分,

    九班的成绩更稳定,能胜出.
    本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    17、x2=-,x2=2.
    【解析】
    先把方程化为一般式,然后利用因式分解法解方程.
    【详解】
    解:2x2+5x-7=0,
    (2x+7)(x-2)=0,
    2x+7=0或x-2=0,
    所以x2=,x2=2.
    本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
    18、证明见解析
    【解析】
    解:∵ MA=MD,∴ △MAD是等腰三角形,
    ∴ ∠DAM=∠ADM.
    ∵ AD∥BC,
    ∴ ∠AMB=∠DAM,∠DMC=∠ADM.
    ∴ ∠AMB=∠DMC.
    又∵ 点M是BC的中点,∴ BM=CM.
    在△AMB和△DMC中,

    ∴ △AMB≌△DMC.
    ∴ AB=DC,四边形ABCD是等腰梯形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    试题解析:∵点M(a,-5)与点N(-1,b)关于x轴对称,
    ∴a=-1.b=5,
    ∴a+b=-1+5=2.
    点睛:关于x轴、y轴对称的点的坐标特征:点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b).
    20、<
    【解析】
    利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.
    【详解】
    解:由折线统计图得乙运动员的成绩波动较大,
    所以S甲2<S乙2
    故选<
    本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.
    21、6
    【解析】
    因为在中

    ∴AB=2BC
    又D为AB中点,
    ∴CD=AD=BD=BC=AB
    又E,F分别为AC,AD的中点,
    ∴EF=CD,所以CD=2EF=6
    故BC为6
    本题主要考查三角形的基本概念和直角三角形。
    22、
    【解析】
    如图,在Rt△ADF和Rt△AEF中,
    AD=AE,AF=AF,
    ∴≌(),
    故,
    因为是正方形的对角线,
    故,
    故∠FAD=22.5°,
    故答案为22.5.
    23、-5
    【解析】
    试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x=-4,然后把分式方程化为整式方程x-1=m,解得m=-5
    故答案为-5.
    二、解答题(本大题共3个小题,共30分)
    24、(1)A船:,B船:;(2)能追上;此时离海岸的距离为海里.
    【解析】
    (1)根据函数图象中的数据用待定系数法即可求出,的函数关系式;
    (2)根据(2)中的函数关系式求其函数图象交点可以解答本题.
    【详解】
    解:(1)由题意,设.
    ∵在此函数图像上,
    ∴,解得,
    由题意,设.
    ∵,在此函数图像上,
    ∴.
    解得,.∴.
    (2)由题意,得
    ,解得.
    ∵,∴能追上.此时离海岸的距离为海里.
    本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
    25、(1)-9;(2)
    【解析】
    (1)根据二次根式的乘法法则运算;(2)先二次根式的除法法则计算,然后把二次根式化为最简二次根式后合并即可。
    【详解】
    解:(1)原式=2×(﹣3)× =﹣9;
    (2)原式=

    =.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可。在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    26、原处还有4.55尺高的竹子.
    【解析】
    竹子折断后刚好构成一直角三角形,设竹子折断处离地面尺,则斜边为尺.利用勾股定理解题即可.
    【详解】
    解:设竹子折断处离地面尺,则斜边为尺,
    根据勾股定理得:
    解得:.
    答:原处还有4.55尺高的竹子.
    此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
    题号





    总分
    得分
    平均数
    中位数
    众数
    九班
    85
    85
    九班
    80
    平均数
    中位数
    众数
    九班
    85
    85
    85
    九班
    85
    80
    100
    相关试卷

    江苏省南京市扬子第一中学2024-2025学年九上数学开学达标检测模拟试题【含答案】: 这是一份江苏省南京市扬子第一中学2024-2025学年九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省南京市浦口外国语学校2024-2025学年数学九上开学达标检测模拟试题【含答案】: 这是一份江苏省南京市浦口外国语学校2024-2025学年数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省济宁市名校九上数学开学达标检测模拟试题【含答案】: 这是一份2025届山东省济宁市名校九上数学开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map