江苏省南京市南京航天大附属初级中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为( )
A.2005B.2003C.﹣2005D.4010
2、(4分)用配方法解方程时,原方程应变形为( )
A.B.C.D.
3、(4分)已知直线y=2x﹣4,则它与两坐标轴围成的三角形的面积是( )
A.2B.3C.4D.5
4、(4分)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是( )
A.a>bB.a=bC.a<bD.以上都不对
5、(4分)下列命题错误的是( )
A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分
C.矩形的对角线相等D.对角线相等的四边形是矩形
6、(4分)已知:|a|=3,=5,且|a+b|=a+b,则a﹣b的值为( )
A.2或8 B.2或﹣8 C.﹣2或8 D.﹣2或﹣8
7、(4分)在直角坐标系中,若点Q与点 P(2,3)关于原点对称,则点Q的坐标是( )
A.(-2,3)B.(2,-3)C.(-2,-3)D.(-3,-2)
8、(4分)如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的方程=m无解,则m的值为_____.
10、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.
11、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.
12、(4分)如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时, 为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)
13、(4分)如图,在中,,底边在轴正半轴上,点在第一象限,延长交轴负半轴于点,延长到点,使,若双曲线经过点,则的面积为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).
(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;
(2)比较购买同样多的笔时,哪种方式更便宜;
(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.
15、(8分)在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC交x轴负半轴于点C,∠BCA=30°,如图①.
(1)求直线BC的解析式.
(2)在图①中,过点A作x轴的垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度的速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度的速度运动,直线MN与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t的值.
(3)若点M是直线AB在第二象限上的一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P为顶点的四边形是菱形.若存在,请直接写出点M的坐标;若不存在,请说明理由.
16、(8分)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.
(1)求∠BAC的度数。
(2)若AC=2,求AD的长。
17、(10分)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成,根据两队每天的工程费用和每天完成的工程量可知,若由两队合做6天可以完成,共需工程费用385200元;若单独完成,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元。
(1)求甲、乙独做各需多少天?
(2)若从节省资金的角度,应该选择哪个工程队?
18、(10分)《九章算术》“勾股”章有一题:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”译文为:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离三尺,问原处还有多高的竹子?
请解答上述问题.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,中,是的中点,平分,于点,若,,则的长度为_____.
20、(4分)已知:如图,四边形中,,要使四边形为平行四边形,需添加一个条件是:__________.(只需填一个你认为正确的条件即可)
21、(4分)化简:= __________.
22、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.
23、(4分)一个样本为1,3,a,b,c,2,2已知这个样本的众数为3,平均数为2,那么这个样本的中位数为_______
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线与轴相交于点,与轴相交于点,且,.
(1)求直线的解析式;
(2)若在直线上有一点,使的面积为4,求点的坐标.
25、(10分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.
26、(12分)阅读以下例题:解不等式:(x 4) (x 1) 1
解:①当 x 4 1 ,则 x 1 1
即可以写成:
解不等式组得:
②当若 x 4 1 ,则 x 1 1
即可以写成:
解不等式组得:
综合以上两种情况:不等式解集: x 1或.
(以上解法依据:若ab 1 ,则a,b 同号)请你模仿例题的解法,解不等式:
(1) (x 1)(x 2) 1;
(2) (x 2)(x 3) 1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-,x1x2= .而α2+3α+β=α2+2α+(α+β),即可求解.
【详解】
α,β是方程x2+2x−2005=0的两个实数根,则有α+β=−2.
α是方程x2+2x−2005=0的根,得α2+2α−2005=0,即:α2+2α=2005.
所以α2+3α+β=α2+2α+(α+β)=α2+2α−2=2005−2=2003,
故选B.
此题考查根与系数的关系,一元二次方程的解,解题关键在于掌握运算法则.
2、A
【解析】
根据配方的原则,首先观察一次项的系数,进而给等式两边同时加上或减去一个数,从而构造完全平方式即可.
【详解】
根据配方的原则原式可化为:
所以可得:
因此可得
故选A.
本题主要考查配方法的熟练应用,注意配方首先根据一次项的系数计算,配方即可.
3、C
【解析】
先根据坐标轴的坐标特征分别求出直线y=2x﹣1与两坐标轴的交点坐标,然后根据三角形的面积公式计算.
【详解】
令y=0,则2x﹣1=0,解得:x=2,所以直线y=2x﹣1与x轴的交点坐标为(2,0);
令x=0,则y=﹣1,所以直线y=2x﹣1与y轴的交点坐标为(0,﹣1),所以此直线与两坐标轴围成的三角形面积2×|﹣1|=1.
故选C.
本题考查了一次函数上点的坐标特征:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,此直线上的点的坐标满足其解析式.也考查了坐标轴上点的坐标特征以及三角形面积公式.
4、A
【解析】
∵k=﹣2<0,
∴y随x的增大而减小,
∵1<2,
∴a>b.
故选A.
5、D
【解析】
试题分析:根据菱形、矩形的判定,平行四边形、矩形的性质进行判断:
A.对角线垂直平分的四边形是菱形,所以A正确;
B.平行四边形的对角线相互平分,所以B正确;
C.矩形的对角线相等,所以C正确;
D.对角线相等的平行四边形是矩形,所以D错误;
考点:菱形、矩形的判定,平行四边形、矩形的性质.
6、D
【解析】
试题分析:利用绝对值的代数意义,以及二次根式性质求出a与b的值,即可求出a﹣b的值.
解:根据题意得:a=3或﹣3,b=5或﹣5,
∵|a+b|=a+b,
∴a=3,b=5;a=﹣3,b=5,
则a﹣b=﹣2或﹣1.
故选D.
7、C
【解析】
关于原点对称的坐标的特点为,横坐标和纵坐标都是互为相反数,据此解答即可.
【详解】
解:∵Q与P(2, 3)关于原点对称,则Q (-2,-3).
故答案为:C
本题考查了平面直角坐标系中点的对称,掌握点的对称特点是解题的关键.
8、B
【解析】
根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.
【详解】
当时,四边形EFGH是矩形,
,,,
,
即,
四边形EFGH是矩形;
故选:B.
此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或.
【解析】
分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.
【详解】
解:方程两边同时乘以(2x﹣3),得:
x+4m=m(2x﹣3),整理得:
(2m﹣1)x=7m
①当2m﹣1=0时,整式方程无解,m=
②当2m﹣1≠0时,x=,x=时,原分式方程无解;
即,解得m=
故答案为:或.
本题考查了分式方程的解,解决本题的关键是明确分式方程无解的条件几种情况,然后再分类讨论.
10、二
【解析】
根据各象限内点的坐标特征,可得答案.
【详解】
解:由点A(x,y)在第三象限,得
x<0,y<0,
∴x<0,-y>0,
点B(x,-y)在第二象限,
故答案为:二.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
11、
【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度
【详解】
∵四边形ABCD是菱形,
∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,
∴BC==5cm,
∴S菱形ABCD==×6×8=24cm2,
∵S菱形ABCD=BC×AE,
∴BC×AE=24,
∴AE=cm.
故答案为: cm.
此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
12、3,5.4,6,6.5
【解析】
作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值
【详解】
点在上,时,秒;
点在上,时,过点作交于点,
点在上,时,
④点在上,时,过点作交于点,
为的中位线
,
本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.
13、
【解析】
连接BE,先根据题意证明BE⊥BC,进而判定△CBE∽△BOD,根据相似比得出BC×OD=OB×BE的值即为|k|的值,再由三角形面积公式即可求解.
【详解】
解:如图,连接,
∵等腰三角形中,,
∴,
∵,
∴,
∴,
又∵,
∴,即,
∴,
又∵,
∴,
∴,即,
又∵双曲线的图象过点,
∴,
∴的面积为.
故答案为:.
此题主要考查了反比例函数比例系数k的几何意义,解题时注意:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,体现了数形结合的思想.
三、解答题(本大题共5个小题,共48分)
14、(1)y甲=5x+60,y乙=4.5x+72;(2)当购买笔数大于24支时,乙种方式便宜;当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以;当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
【解析】分析:(1)根据购买的费用等于书包的费用+笔的费用就可以得出结论;
(2)由(1)的解析式,分情 y甲>y乙时,况y甲=y乙时和y甲<y乙时分别建立不等式和方程讨论就可以求出结论;
(3)由条件分析可以得出用一种方式购买选择甲商场求出费用,若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用为y,再根据一次函数的性质就可以求出结论.
详解:(1)由题意,得:
y甲=20×4+5(x﹣4)=5x+60,y乙=90%(20×4+5x)=4.5x+72;
(2)由(1)可知 当 y甲>y乙时
5x+60>4.5x+72,解得:x>24,即当购买笔数大于24支时,乙种方式便宜.
当 y甲=y乙时,5x+60=4.5x+72
解得:x=24,即当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以.
当 y甲<y乙时,5x+60<4.5x+72,解得:x<24,即当购买笔数大于4支而小于24支时,甲种方式便宜;
(3)用一种方法购买4个书包,12支笔时,由12<24,则选甲种方式 需支出
y=20×4+8×5=120(元)
若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用
y=20 x+90%〔20(4﹣x)+5(12﹣x)〕(0<x≤4)
y=﹣2.5 x+126
由k=﹣2.5<0则y随x增大而减小,即当x=4时 y最小=116(元)
综上所述:用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
点睛:本题考查了一次函数的解析式的运用,分类讨论的运用及不等式和方程的解法的运用,一次函数的性质的运用,解答时先表示出两种购买方式的解析式是解答第二问的关键,解答第三问灵活运用一次函数的性质是难点.
15、(1)y=x+2;(2),t=秒或t=+4秒时,△DSN≌△BOC;(3)M(+4)或M()或M().
【解析】
(1)求出B,C的坐标,由待定系数法可求出答案;
(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.分两种情况:(Ⅰ)当点M在线段AB上运动时,(Ⅱ)当点M在线段AB的延长线上运动时,由DS=BO=2,可得出t的方程,解得t的值即可得出答案;
(3)设点M(a,﹣a+2),N(b,),P(2,c),点B(0,2),分三种情况:(Ⅰ)当以BM,BP为邻边构成菱形时,(Ⅱ)当以BP为对角线,BM为边构成菱形时,(Ⅲ)当以BM为对角线,BP为边构成菱形时,由菱形的性质可得出方程组,解方程组即可得出答案.
【详解】
解:(1)∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,
∴x=0时,y=2,y=0时,x=2,
∴A(2,0),B(0,2),
∴OB=AO=2,
在Rt△COB中,∠BOC=90°,∠BCA=30°,
∴OC=2,
∴C(﹣2, 0),
设直线BC的解析式为y=kx+b,代入B,C两点的坐标得,
,
∴k=,b=2,
∴直线BC的解析式为y=x+2;
(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.
(Ⅰ)如图1,当点M在线段AB上运动时,
∵CN=2t,AM=t,OB=OA=2,∠BOA=∠BOC=90°,
∴∠BAO=∠ABO=45°,
∵∠BCO=30°,
∴NP=MQ=t,
∵MQ⊥x轴,NP⊥x轴,
∴∠NPQ=∠MQA=90°,NP∥MQ,
∴四边形NPQM是矩形,
∴NS∥x轴,
∵AD⊥x轴,
∴AS∥MQ∥y轴,
∴四边形MQAS是矩形,
∴AS=MQ=NP=t,
∵NS∥x轴,AS∥MQ∥y轴,
∴∠DNS=∠BCO,∠DSN=∠DAO=∠BOC=90°,
∴当DS=BO=2时,
△DSN≌△BOC(AAS),
∵D(2, +2),
∴DS=+2﹣t,
∴+2﹣t=2,
∴t=(秒);
(Ⅱ)当点M在线段AB的延长线上运动时,如图2,
同理可得,当DS=BO=2时,△DSN≌△BOC(AAS),
∵DS=t﹣(+2),
∴t﹣(+2)=2,
∴t=+4(秒),
综合以上可得,t=秒或t=+4秒时,△DSN≌△BOC.
(3)存在以M、B、N、P为顶点的四边形是菱形:
M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).
∵M是直线AB在第二象限上的一点,点N,P分别在直线BC,直线AD上,
∴设点M(a,﹣a+2),N(b, b+2),P(2,c),点B(0,2),
(Ⅰ)当以BM,BP为邻边构成菱形时,如图3,
∵∠CBO=60°,∠OBA=∠OAB=∠PAF=45°,
∴∠DBA=∠MBN=∠PBN=75°,
∴∠MBE=45°,∠PBF=30°,
∴MB=ME,PF=AP,PB=2PF=AP,
∵四边形BMNP是菱形,
∴,
解得,a=﹣2﹣2,
∴M(﹣2﹣2,2+4)(此时点N与点C重合),
(Ⅱ)当以BP为对角线,BM为边构成菱形时,如图4,
过点B作EF∥x轴,ME⊥EF,NF⊥EF,
同(Ⅰ)可知,∠MBE=45°,∠NBF=30°,
由四边形BMNP是菱形和BM=BN得:
,
解得:a=﹣2﹣4,
∴M(﹣2﹣4,2+6),
(Ⅲ)当以BM为对角线,BP为边构成菱形时,如图5,
作NE⊥y轴,BF⊥AD,
∴∠BNE=30°,∠PBF=60°,
由四边形BMNP是菱形和BN=BP得,
,
解得:a=﹣2+2,
∴M(﹣2+2,2).
综合上以得出,当以M、B、N、P为顶点的四边形是菱形时,点M的坐标为:
M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).
本题考查了待定系数法求函数解析式,动点问题与全等结合,菱形探究,熟练掌握相关方法是解题的关键.
16、 (1)∠BAC=75°
(2)
AD=.
【解析】
试题分析:(1)根据三角形内角和定理,即可推出∠BAC的度数;
(2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.
(1)∠BAC=180°-60°-45°=75°;
(2)∵AD⊥BC,
∴△ADC是直角三角形,
∵∠C=45°,
∴∠DAC=45°,
∴AD=DC,
∵AC=2,
考点:本题主要考查勾股定理、三角形内角和定理
点评:解答本题的关键是根据三角形内角和定理推出AD=DC.
17、(1)10 15 (2)选甲比较节约资金.
【解析】
(1)设甲独做要x天,乙独做要y天,根据题意列方程即可.
(2)设甲独做要1天要m元,乙独做要1天要n元,再计算每个工程队的费用进行比较即可.
【详解】
(1)设甲独做要x天,乙独做要y天
解得:
故甲独做要10天,乙独做要15天
(2)设甲独做要1天要m元,乙独做要1天要n元
解得
甲独做要的费用为:
乙独做要的费用为:
所以选甲
本题主要考查二元一次方程组的应用,是常考点,应当熟练掌握.
18、原处还有4.55尺高的竹子.
【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面尺,则斜边为尺.利用勾股定理解题即可.
【详解】
解:设竹子折断处离地面尺,则斜边为尺,
根据勾股定理得:
解得:.
答:原处还有4.55尺高的竹子.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
延长BD交AC于F,利用“角边角”证明△ADF和△ADB全等,根据全等三角形对应边相等可得AF=AB,BD=FD,再求出CF并判断出DE是△BCF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得.
【详解】
解:如图,延长BD交AB于F,
∵AD平分∠BAC,
∴∠BAD=∠FAD,
∵BD⊥AD,
∴∠ADB=∠ADF=90°,
在△ADF和△ADB中
∴△ADF≌△ADB(ASA),
∴AF=AB,BD=FD,
∴CF=AC-AB=6-4=2cm,
又∵点E为BC的中点,
∴DE是△BCF的中位线,
.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.
20、.(答案不唯一)
【解析】
由AO=OC,根据对角线互相平分的四边形是平行四边形,即可得添加BO=OD即可.
【详解】
添加的BO=OD.
理由:∵在四边形ABCD中,BO=DO,AO=CO,
∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).
此题考查了平行四边形的判定.此题难度不大,注意掌握平行四边形的判定定理是解此题的关键.
21、a+b
【解析】
将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
【详解】
解:原式=
=
=
=a+b
此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
22、1.1
【解析】
连接DF,由勾股定理求出AB=1,由等腰三角形的性质得出∠CAF =∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.
【详解】
连接DF,如图所示:
在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,
∵AD=AC=3,AF⊥CD,
∴∠CAF =∠DAF,BD=AB-AD=2,
在△ADF和△ACF中,
∴△ADF≌△ACF(SAS),
∴∠ADF=∠ACF=90°,CF=DF,
∴∠BDF=90°,
设CF=DF=x,则BF=4-x,
在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,
即x2+22=(4-x)2,
解得:x=1.1;
∴CF=1.1;
故答案为1.1.
本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.
23、2
【解析】分析:先根据众数为3,平均数为2求出a,b,c的值,然后根据中位数的求法求解即可.
详解:∵这个样本的众数为3,
∴a,b,c中至少有两个数是3.
∵平均数为2,
∴1+3+a+b+c+2+2=2×7,
∴a+b+c=6,
∴a,b,c中有2个3,1个0,
∴从小到大可排列为:0,1,2,2,3,3,3,
∴中位数是2.
故答案为:2.
点睛:本题考查了众数、平均数、中位数的计算,熟练掌握众数、平均数、中位数的计算方法是解答本题的关键.众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)或
【解析】
(1)根据,,分别求出A、B的坐标,再将这两点坐标代入,即可求出AB的解析式;
(2)以OB为底(因为OB刚好与y轴重合),则P点到y轴的距离即为高,根据的面积是4,计算出高的长度,即可得到P点的横坐标(有两个),代入AB的解析式即可求出P点的坐标.
【详解】
解:(1)∵,,∴
∴,,
由题意,得,解得
∴直线的解析式是
(2)
设,过点作轴于点,则
∵,即,解得:
当时,;当时,.
∴或.
本题考查一次函数的综合应用,(1)中能根据点与坐标系的特征,得出A、B两点的坐标是解题的关键;(2)中在坐标系中计算三角形的面积时,常以垂直x轴或y轴的边作为三角形的底进行计算比较简单.
25、BE∥DF,BE=DF,理由见解析
【解析】
证明△BCE≌△DAF,得到BE=DF,∠3=∠1,问题得解.
【详解】
解:猜想:BE∥DF,BE=DF.
证明:如图1
∵四边形ABCD是平行四边形,
∴BC=AD,∠1=∠2,
又∵CE=AF,
∴△BCE≌△DAF.
∴BE=DF,∠3=∠1.
∴BE∥DF.
此题考查了平行四边形的性质、全等三角形的判定与性质.难度适中,注意掌握数形结合思想的应用.
26、(1)x>2或 x<-1;(2)-2<x<2.
【解析】
(1)根据例题可得:此题分两个不等式组和,分别解出两个不等式组即可;
(2)根据两数相乘,异号得负可得此题也分两种情况和解出不等式组即可.
【详解】
解:(1)当x+1>1时,x-2>1,可以写成,
解得:x>2;
当x+1<1时,x-2<1,可以写成,
解得:x<-1,
综上:不等式解集:x>2或 x<-1;
(2)当x+2>1时,x-2<1,可以写成,
解得-2<x<2;
当x+2<1时,x-2>1,可以写成,
解得:无解,
综上:不等式解集:-2<x<2.
此题主要考查了不等式的解法,关键是正确理解例题的解题根据,然后再进行计算.
题号
一
二
三
四
五
总分
得分
江苏省南京市溧水区2025届九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份江苏省南京市溧水区2025届九年级数学第一学期开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省南京市第五初级中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024年江苏省南京市第五初级中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南京市秦淮区四校数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市秦淮区四校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。