搜索
    上传资料 赚现金
    英语朗读宝

    北师大版2024-2025学年九年级数学上册专题2.5实际问题与一元二次方程【十大题型】专题特训(原卷版+解析)

    北师大版2024-2025学年九年级数学上册专题2.5实际问题与一元二次方程【十大题型】专题特训(原卷版+解析)第1页
    北师大版2024-2025学年九年级数学上册专题2.5实际问题与一元二次方程【十大题型】专题特训(原卷版+解析)第2页
    北师大版2024-2025学年九年级数学上册专题2.5实际问题与一元二次方程【十大题型】专题特训(原卷版+解析)第3页
    还剩50页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版2024-2025学年九年级数学上册专题2.5实际问题与一元二次方程【十大题型】专题特训(原卷版+解析)

    展开

    这是一份北师大版2024-2025学年九年级数学上册专题2.5实际问题与一元二次方程【十大题型】专题特训(原卷版+解析),共53页。
    专题2.5 实际问题与一元二次方程【十大题型】【北师大版】TOC \o "1-3" \h \u  HYPERLINK \l "_Toc13893" 【题型1 传播问题】  PAGEREF _Toc13893 \h 1 HYPERLINK \l "_Toc9287" 【题型2 增长率问题】  PAGEREF _Toc9287 \h 2 HYPERLINK \l "_Toc15457" 【题型3 营销问题】  PAGEREF _Toc15457 \h 2 HYPERLINK \l "_Toc31265" 【题型4 工程问题】  PAGEREF _Toc31265 \h 4 HYPERLINK \l "_Toc26982" 【题型5 行程问题】  PAGEREF _Toc26982 \h 5 HYPERLINK \l "_Toc12797" 【题型6 图表信息题】  PAGEREF _Toc12797 \h 6 HYPERLINK \l "_Toc9524" 【题型7 数字问题】  PAGEREF _Toc9524 \h 7 HYPERLINK \l "_Toc29705" 【题型8 与图形有关的问题】  PAGEREF _Toc29705 \h 8 HYPERLINK \l "_Toc8144" 【题型9 动态几何问题】  PAGEREF _Toc8144 \h 9 HYPERLINK \l "_Toc24217" 【题型10 其他问题】  PAGEREF _Toc24217 \h 11【题型1 传播问题】【例1】(2023春·福建泉州·九年级校联考期中)2019年年底以来,湖北省武汉市发现一种新型冠状病毒引起的急性呼吸道传染疾病。(1)在新冠初期,人们因为不了解这种病毒所以也没有及时进行隔离,若有1人感染后经过两轮的传染将会有144人感染了“新冠”,求每一轮传染后平均一个人会传染了几个人?(2)后来,大家众志成城,全都隔离在家,但玲玲爷爷种的糖心苹果遇到了滞销,于是玲玲在朋友圈帮爷爷销售,糖心苹果的成本为8元/千克,她发现当售价为12元/千克时,每天可卖出40千克,而每涨1元时,每天就少卖出10千克.如果每天要达到150元的利润而且又最大限度地帮爷爷增加销量,请你帮玲玲确定销售单价.【变式1-1】(2023春·辽宁沈阳·九年级统考期末)一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人一共握了66次手,则这次会议到会的人数是(    )A.11 B.12 C.22 D.33【变式1-2】(2023春·黑龙江七台河·九年级统考期末)某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,则每个支干长出 个小分支.【变式1-3】(2023春·广东江门·九年级台山市新宁中学校考期中)组织一次排球邀请赛,采取单循环的形式,即每两个队都要打一场比赛.(1)如果有四个队参赛,则需要打多少场比赛?(2)写出比赛的总场数y与参赛队伍数量x之间的函数关系式;(3)经过最后统计,共打了28场比赛,求这次比赛共有多少个队参加?【题型2 增长率问题】【例2】(2023春·重庆九龙坡·九年级统考期末)某图书店在2022年国庆节期间举行促销活动,某课外阅读书进货价为每本8元,标价为每本15元.(1)该图书店举行了国庆大回馈活动,连续两次降价,每次降价的百分率相同,最后以每本9.6元的价格售出,求图书店每次降价的百分率;(2)在九月底该书店老板去进货该书500本,按照(1)两次降价后的价格在国庆节全部售出;国庆节后老板去进货发现进货价上涨了a%,进货量比九月底增加3a%,以标价的八折全部售出后,比国庆节的总利润多1200元,求a%的值.【变式2-1】(2023春·黑龙江大庆·九年级校考期末)随着我国数字化阅读方式的接触率和人群持续增多,数字阅读凭借独有的便利性成为了更快获得优质内容的重要途径.某市2020年数字阅读市场规模为400万元,2022年数字阅读市场规模为576万元.(1)求2020年到2022年该市数字阅读市场规模的年平均增长率;(2)若年平均增长率不变,求2023年该市数字阅读市场规模是多少万元?【变式2-2】(2023春·河北承德·九年级承德市第四中学校考期中)在国家的宏观调控下,某市的商品房成交价由今年3月份的5000元/m2下降到5月份的4050元/m2(1)问4、5两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破3000元/m2?请说明理由.【变式2-3】(2023春·山西太原·九年级期末)某电器商店销售某品牌冰箱,该冰箱每台的进货价为2500元,已知该商店去年10月份售出50台,第四季度累计售出182台.(1)求该商店11,12两个月的月均增长率;(2)调查发现,当该冰箱售价为2900元时,平均每天能售出8台;售价每降低50元,平均每天能多售出4台.该商店要想使该冰箱的销售利润平均每天达到5000元,求每台冰箱的售价.【题型3 营销问题】【例3】(2023春·湖南长沙·九年级校联考期中)春节是中国的传统节日,每年元旦节后是购物的高峰期,2023年元月某水果商从农户手中购进A、B两种红富士苹果,其中A种红富士苹果进货价为28元/件,销售价为42元/件,其中B种红富士苹果进货价为22元/件,销售价为34元/件.(注:利润=销售价−进货价)(1)水果店第一次用720元购进A、B两种红富士苹果共30件,求两种红富士苹果分别购进的件数;(2)第一次购进的红富士苹果售完后,该水果店计划再次购进A、B两种红富士苹果共80件(进货价和销售价都不变),且进货总费用不高于2000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)春节临近结束时,水果店发现B种红富士苹果还有大量剩余,决定对B种红富士苹果调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B种红富士苹果平均每天销售利润为90元?【变式3-1】(2023春·广东江门·九年级期末)汽车专卖店销售某种型号的汽车.已知该型号汽车的进价为10万元/辆,销售一段时间后发现:当该型号汽车售价定为15万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出2辆.(1)当售价为13.5万元/辆时,求平均每周的销售利润.(2)若该店计划下调售价,增大销量,但要确保平均每周的销售利润为40万元,每辆汽车的售价定为多少合适?【变式3-2】(2023春·四川乐山·九年级统考期末)今年超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.(1)求四、五这两个月销售量的月平均增长百分率.(2)经市场预测,六月份的销售量将与五月份持平,现商场为了减少库存,采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场六月份可获利4250元?【变式3-3】(2023春·重庆沙坪坝·九年级重庆南开中学校考开学考试)正月十五是中华民族传统的节日——元宵节,家家挂彩灯、户户吃汤圆已成为世代相沿的习俗.位于北关古城内的盼盼手工汤圆店,计划在元宵节前用21天的时间生产袋装手工汤圆,已知每袋汤圆需要0.3斤汤圆馅和0.5斤汤圆粉,而汤圆店每天能生产450斤汤圆馅或300斤汤圆粉(每天只能生产其中一种).(1)若这21天生产的汤圆馅和汤圆粉恰好配套,且全部及时加工成汤圆,则总共生产了多少袋手工汤圆?(2)为保证手工汤圆的最佳风味,汤圆店计划把达21天生产的汤圆在10天内销售完毕.据统计,每袋手工汤圆的成本为13元,售价为25元时每天可售出225袋,售价每降低2元,每天可多售出75袋.汤圆店按售价25元销售2天后,余下8天进行降价促销,第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店,若最终获利40500元,则促销时每袋应降价多少元?【题型4 工程问题】【例4】(2023春·重庆渝中·九年级重庆巴蜀中学校考期末)某工程队采用A、B两种设备同时对长度为4800米的公路进行施工改造.原计划A型设备每小时铺设路面比B型设备的2倍多30米,则32小时恰好完成改造任务.(1)求A型设备每小时铺设的路面长度;(2)通过勘察,此工程的实际施工里程比最初的4800米多了1000米.在实际施工中,B型设备在铺路效率不变的情况下,时间比原计划增加了m+25小时,同时,A型设备的铺路速度比原计划每小时下降了3m米,而使用时间增加了m小时,求m的值.【变式4-1】(2023春·宁夏中卫·九年级校考期中)随着铁路运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元,在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)【变式4-2】(2023春·重庆云阳·九年级校联考期中)2020年初,武汉爆发了新型冠状病毒引起的肺炎,并迅速在全国传染开来,与此同时医护人员一直坚守在抗击肺炎的前线,为我们保驾护航!罗曼·罗兰说:“凡是行为善良与高尚的人,定能因之而担当患难.”他们是最可亲可敬的人!由此,医疗物资护目镜的需求量大大增加,两江新区某护目镜生 产厂家自正月初三起便要求全体员工提前返岗,在接到单位的返岗通知后,员工们都毫无怨言,快速回到了自己的工作岗位,用自己的实际行动践行着一份责任和担当.已知该厂拥有两条不同的护目镜加工生产线A,B.原计划A生产线每小时生产护目镜400个,B生产线每小时生产护目镜500个. (1)若生产线A,B一共工作12小时,且生产护目镜的总数量不少于5500个,则B生产线至少生产护目镜多少小时? (2)原计划A,B生产线每天均工作8小时,但现在为了尽快满足我市护目镜的需求,两条生产线每天均比原计划多工作了相同的小时数,但因为机器损耗及人员不足原因,A生产线每增加1小时,该生产线每小时的产量将减少10个,B生产线每增加1小时,该生产线每小时的产量将减少15个.这样一天生产的护目镜将比原计划多3300个,求该厂实际每天生产护目镜的时间.【变式4-3】(2023春·重庆合川·九年级校考期中)甲、乙两工程队共同承建某高速路隧道工程,隧道总长2000米,甲、乙分别从隧道两端向中间施工,计划每天各施工6米.因地质情况不同,两支队伍每合格完成1米隧道施工所需成本不一样.甲每合格完成1米,隧道施工成本为6万元;乙每合格完成1米,隧道施工成本为8万元.(1)若工程结算时乙总施工成本不低于甲总施工成本的43,求甲最多施工多少米?(2)实际施工开始后因地质情况比预估更复杂,甲乙两队每日完成量和成本都发生变化.甲每合格完成1米隧道施工成本增加m万元时,则每天可多挖12m米,乙因特殊地质,在施工成本不变的情况下,比计划每天少挖14m米,若最终每天实际总成本比计划多(11m-8)万元,求m的值.【题型5 行程问题】【例5】(2023春·重庆云阳·九年级校联考期中)周末,小明和小红约着一起去公园跑步锻炼身体若两人同时从A地出发,匀速跑向距离12000m处的B地,小明的跑步速度是小红跑步速度的1.2倍,那么小明比小红早5分钟到达B地.(1)求小明、小红的跑步速度;(2)若从A地到达B地后,小明以跑步形式继续前进到C地(整个过程不休息),据了解,在他从跑步开始前30分钟内,平均每分钟消耗热量10卡路里,超过30分钟后,每多跑步1分钟,平均每分钟消耗的热量就增加1卡路里,在整个锻炼过程中,小明共消耗2300卡路里的热量,小明从A地到C地锻炼共用多少分钟.【变式5-1】(2023春·重庆·九年级西南大学附中校考期中)小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟.【变式5-2】(2023·九年级单元测试)甲、乙两个机器人分别从相距70m的A、B两个位置同时相向运动.甲第1分钟走2m,以后每分钟比前1分钟多走1m,乙每分钟走5m.(1)甲、乙开始运动后多少分钟第一次同时到达同一位置?(2)如果甲、乙到达A或B后立即折返,甲继续每分钟比前1分钟多走1m,乙继续按照每分钟5m的速度行走,那么开始运动后多少分钟第二次同时到达同一位置?【变式5-3】(2023·四川成都·成都实外校考一模)为切实推进广大青少年学生走向操场、走进大自然、走到阳光下,积极参加体育锻炼,阳光体育长跑是如今学校以及当代年轻人选择最多的运动.学生坚持长跑,不仅能够帮助身体健康,还能够收获身心的愉悦.周末,小明和小齐相约一起去天府绿道跑步.若两人同时从A地出发,匀速跑向距离12000m处的B地,小明的跑步速度是小齐跑步速度的1.2倍,那么小明比小齐早5分钟到达B地.根据以上信息,解答下列问题:(1)小明每分钟跑多少米?(2)若从A地到达B地后,小明以跑步形式继续前进到C地(整个过程不休息).据了解,从他跑步开始,前30分钟内,平均每分钟消耗热量10卡路里,超过30分钟后,每多跑步1分钟,平均每分钟消耗的热量就增加1卡路里,在整个锻炼过程中,小明共消耗2300卡路里的热量,小明从A地到C地锻炼共用多少分钟.【题型6 图表信息题】【例6】(2023春·河北衡水·九年级校考期末)近年来,随着城市居民入住率的增加,污水处理问题成为城市的难题.某城市环境保护局协同自来水公司为鼓励居民节约用水,减少污水排放,规定:居民用水量每月不超过a吨时,只需交纳10元水费,如果超过a吨,除按10元收费外,超过部分,另按每吨5a元收取水费(水费+污水处理费).(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用a的代数式表示该用户应交水费多少元;(2)下表是这户居民4月份和5月份的用水量和缴费情况;根据上表数据,求规定用水量a的值.(3)结合当地水资源状况,谈谈如何开展水资源环境保护?如何节约用水?【变式6-1】(2023春·江苏苏州·九年级统考期末)根据龙湾风景区的旅游信息,某公司组织一批员工到该风景区旅游,支付给旅行社28000元.你能确定参加这次旅游的人数吗?【变式6-2】(2023春·江苏苏州·九年级统考期中)某旅行社一则旅游消息如下:(1)甲公司员工分两批参加该项旅游,分别支付给旅行社12000元和24000元,甲公司员工有__________人.(2)乙公司员工一起参加该项旅游,支付给旅行社36000元,乙公司员工多少人?【变式6-3】(2023春·九年级课时练习)海洲市出租车收费标准如下(规定:四舍五入,精确到元,N≤15)N是走步价,李先生乘坐出租车打出的电子收费单是:里程11公里,应收29.1元,你能依据以上信息,推算出起步价N的值吗?【题型7 数字问题】【例7】(2023春·山西太原·九年级统考期中)直角三角形中“勾三股四弦五”这一特殊关系,在中国称为“商高定理”,在国外又称为“毕达哥拉斯定理”.由此发现三个连续正整数3,4,5,满足32+42=52,即前两个数的平方和等于第三个数的平方.请你探究:是否存在五个连续正整数,满足前三个数的平方和等于后两个数的平方和?若存在,请求出这五个正整数;若不存在,请说明理由.【变式7-1】(2023春·广东梅州·九年级校考开学考试)一个两位数,其个位上的数与十位上的数的和等于6,而个位与十位上的数的积等于这两位数的三分之一,求这个两位数.【变式7-2】(2023春·辽宁沈阳·九年级统考期末)2021年7月1日是建党100周年纪念日,在本月日历表上可以用小方框圈出四个数(如图所示),圈出的四个数中,最小数与最大数的乘积能否为33或65,若能求出最小数:若不能请说明理由.【变式7-3】(2023春·福建南平·九年级统考期中)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.【题型8 与图形有关的问题】【例8】(2023春·广东韶关·九年级翁源县龙仙第二中学校考期中)如图,一农户要建一个矩形鸡舍,为了节省材料,鸡舍的一边利用长为12米的墙,另外三边用长为27米的建筑材料围成,为方便进出,在垂直墙的一边留下一个宽1米的门,所围成矩形鸡舍的长、宽分别是多少时,鸡舍面积为90平方米?  【变式8-1】(2023春·重庆大渡口·九年级校考期末)(1)如图1,在一块长为40m,宽为30m的矩形地面上,修建有道路,道路都是等宽的,剩余部分种上草坪,测得草坪的面积是1064m2,道路的宽度是多少?(2)后来要在这块长为40m,宽为30m的矩形地面上,进行重新规划,打算修建两横两竖的道路(横竖道路各与矩形的一条边平行),如图2,横、竖道路的宽度相同,剩余部分种上草坪,如果要使草坪的面积是地面面积的二分之一,应如何设计道路的宽度?【变式8-2】(2023春·广东惠州·九年级校考开学考试)用54m长的竹栅栏围一个矩形菜园,菜园的一边靠长为am的墙,另三边用竹栅栏围成,宽度都是1m,设与墙垂直的一边长为xm.(1)当a=41时,矩形菜园面积是320m2,求x;(2)当a足够大时,问矩形菜园的面积能否达到400m2?【变式8-3】(2023·山西吕梁·九年级统考期中)图1所示是某广场地面示意图,该地面是由图2所示正方形地砖铺砌而成,某综合实践小组的同学测量图2所示地砖,得到AB=100cm,AE=AH=CF=CG,且AE3000,∴预测到7月份该市的商品房成交均价不会跌破3000元/m2.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.【变式2-3】(2023春·山西太原·九年级期末)某电器商店销售某品牌冰箱,该冰箱每台的进货价为2500元,已知该商店去年10月份售出50台,第四季度累计售出182台.(1)求该商店11,12两个月的月均增长率;(2)调查发现,当该冰箱售价为2900元时,平均每天能售出8台;售价每降低50元,平均每天能多售出4台.该商店要想使该冰箱的销售利润平均每天达到5000元,求每台冰箱的售价.【答案】(1)20%(2)2750元【分析】(1)设该商店11,12两个月的月均增长率为x,则该商店去年11月份售出501+x台,12月份售出501+x2台,根据该商店去年第四季度累计售出182台,可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论;(2)设每台冰箱的售价为y元,则每台的销售利润为y−2500元,平均每天可售出(8+4×2900−y50)台,利用总利润=每台的销售利润×平均每天的销售量,可得出关于y的一元二次方程,解之即可得出结论.【详解】(1)解:设该商店11,12两个月的月均增长率为x,则该商店去年11月份售出501+x台,12月份售出501+x2台,根据题意得:50+501+x+501+x2=182,整理得:25x2+75x−16=0,解得:x1=0.2=20%,x2=−3.2(不符合题意,舍去).答:该商店11,12两个月的月均增长率为20%;(2)设每台冰箱的售价为y元,则每台的销售利润为y−2500元,平均每天可售出(8+4×2900−y50)台,根据题意得:(y−2500)(8+4×2900−y50)=5000,整理得:y2−5500y+7562500=0,解得:y1=y2=2750.答:每台冰箱的售价为2750元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【题型3 营销问题】【例3】(2023春·湖南长沙·九年级校联考期中)春节是中国的传统节日,每年元旦节后是购物的高峰期,2023年元月某水果商从农户手中购进A、B两种红富士苹果,其中A种红富士苹果进货价为28元/件,销售价为42元/件,其中B种红富士苹果进货价为22元/件,销售价为34元/件.(注:利润=销售价−进货价)(1)水果店第一次用720元购进A、B两种红富士苹果共30件,求两种红富士苹果分别购进的件数;(2)第一次购进的红富士苹果售完后,该水果店计划再次购进A、B两种红富士苹果共80件(进货价和销售价都不变),且进货总费用不高于2000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)春节临近结束时,水果店发现B种红富士苹果还有大量剩余,决定对B种红富士苹果调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B种红富士苹果平均每天销售利润为90元?【答案】(1)A中苹果购进10件,B中苹果购进20件(2)购进A种苹果40件,B中苹果40件时,获得最大销售利润为1040元(3)将销售价定为每件27元时,才能使B种红富士苹果平均每天销售利润为90元【分析】(1)设A,B两种苹果分别购进x件和y件,列方程组求解即可.(2)设购进A种苹果m件,利润为w元,列出w关于m的函数关系式讨论最值即可.(3)设B种苹果降价a元销售,根据利润=90元,列出一元二次方程求出a,得到结果.【详解】(1)解:设A,B两种苹果分别购进x件和y件,由题意得:x+y=3028x+22y=720,解得x=10y=20,答:A中苹果购进10件,B中苹果购进20件.(2)解:设购进A种苹果m件,则购进B种苹果80−m件,由题意得:28m+2280−m≤2000,∴m≤40,设利润为w元,则w=42−28m+34−2280−m=2m+960,∵2>0,∴w随m的增大额增大,∴当m=40时,w最大值=2×40+960=1040.故购进A种苹果40件,B中苹果40件时,获得最大销售利润为1040元.(3)解:设B种苹果降价a元销售,则每天多销售2a件,每天每件利润为12−a元,由题意得:4+2a12−a=90,解得,a=3或a=7,∵为了尽快减少库存,∴a=7,∴ 34−7=27,答:将销售价定为每件27元时,才能使B种红富士苹果平均每天销售利润为90元.【点睛】本题考查了二元一次方程组,一次函数,一元一次不等式以及一元二次方程的应用,读懂题意找出等量或不等关系是解题关键.【变式3-1】(2023春·广东江门·九年级期末)汽车专卖店销售某种型号的汽车.已知该型号汽车的进价为10万元/辆,销售一段时间后发现:当该型号汽车售价定为15万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出2辆.(1)当售价为13.5万元/辆时,求平均每周的销售利润.(2)若该店计划下调售价,增大销量,但要确保平均每周的销售利润为40万元,每辆汽车的售价定为多少合适?【答案】(1)平均每周的销售利润是49万元(2)每辆汽车的售价定为12万元更合适【分析】(1)根据当该型号汽车售价定为15万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为13.5万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x万元,根据每辆的盈利×销售的辆数=40万元,列方程求出x的值,进而得到每辆汽车的售价.【详解】(1)解:∵当售价为13.5万元/辆时,平均每周销量为:8+15−13.50.5×2=14(辆),∴平均每周利润为:13.5−10×14=49(万元),答:平均每周的销售利润是49万元;(2)解:设每辆汽车的售价是x万元,x−108+15−x0.5×2=40.化简,得x−1017−x=10,x2−27x+180=0,解得:x1=12,x2=15,由于希望增大销量,定价12万元售价更合适,答:每辆汽车的售价定为12万元更合适.【点睛】本题主要考查了一元二次方程的应用,读懂题意找准数量关系与等量关系是解题的关键.【变式3-2】(2023春·四川乐山·九年级统考期末)今年超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.(1)求四、五这两个月销售量的月平均增长百分率.(2)经市场预测,六月份的销售量将与五月份持平,现商场为了减少库存,采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场六月份可获利4250元?【答案】(1)25%(2)5元【分析】(1)利用平均增长率的等量关系:a1+x2=b,列式计算即可;(2)利用总利润=单件利润×销售数量,列方程求解即可.【详解】(1)解:设平均增长率为x,由题意得:256×1+x2=400,解得:x=0.25或x=−2.25(舍);∴四、五这两个月的月平均增长百分率为25%;(2)解:设降价y元,由题意得:40−y−25400+5y=4250,整理得:y2+65y−350=0,解得:y=5或y=−70(舍);∴当商品降价5元时,商场六月份可获利4250元.【点睛】本题考查一元二次方程的实际应用.根据题意正确的列出一元二次方程是解题的关键.【变式3-3】(2023春·重庆沙坪坝·九年级重庆南开中学校考开学考试)正月十五是中华民族传统的节日——元宵节,家家挂彩灯、户户吃汤圆已成为世代相沿的习俗.位于北关古城内的盼盼手工汤圆店,计划在元宵节前用21天的时间生产袋装手工汤圆,已知每袋汤圆需要0.3斤汤圆馅和0.5斤汤圆粉,而汤圆店每天能生产450斤汤圆馅或300斤汤圆粉(每天只能生产其中一种).(1)若这21天生产的汤圆馅和汤圆粉恰好配套,且全部及时加工成汤圆,则总共生产了多少袋手工汤圆?(2)为保证手工汤圆的最佳风味,汤圆店计划把达21天生产的汤圆在10天内销售完毕.据统计,每袋手工汤圆的成本为13元,售价为25元时每天可售出225袋,售价每降低2元,每天可多售出75袋.汤圆店按售价25元销售2天后,余下8天进行降价促销,第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店,若最终获利40500元,则促销时每袋应降价多少元?【答案】(1)总共生产了9000袋手工汤圆(2)促销时每袋应降价3元【分析】(1)设总共生产了a袋手工汤圆,利用这21天生产的汤圆馅和汤圆粉恰好配套做等量关系列出方程即可;(2)设促销时每袋应降价x元,利用最终获利40500元做等量关系列出方程即可.【详解】(1)设总共生产了a袋手工汤圆,依题意得,0.3a450+0.5a300=21解得a=9000,经检验a=9000是原方程的解,答:总共生产了9000袋手工汤圆(2)设促销时每袋应降价x元,当刚好10天全部卖完时,依题意得,225×2×25−13+825−13−x225+752x=40500整理得:x2−6x+45=0Δ=62−4×4530,然后根据题意列出方程,再判定出符合题意的解即可.【详解】设有x人参加这次旅游∵30×800=2400030依题意得:x800−x−301×10=28000解得:x1=40,x2=70当x1=40时,800−x−301×10=700>500,符合题意.当x2=70时,800=x−301×10=40012,不合题意,舍去;当x=9时,28−2x=10,即AB=9,BC=10,答:鸡舍的边长AB、BC分别是9米,10米.【点睛】本题考查了一元二次方程的实际应用,矩形的面积公式,一元二次方程的解法,根据题目的等量关系正确列方程是解题关键.【变式8-1】(2023春·重庆大渡口·九年级校考期末)(1)如图1,在一块长为40m,宽为30m的矩形地面上,修建有道路,道路都是等宽的,剩余部分种上草坪,测得草坪的面积是1064m2,道路的宽度是多少?(2)后来要在这块长为40m,宽为30m的矩形地面上,进行重新规划,打算修建两横两竖的道路(横竖道路各与矩形的一条边平行),如图2,横、竖道路的宽度相同,剩余部分种上草坪,如果要使草坪的面积是地面面积的二分之一,应如何设计道路的宽度?【答案】(1)2m(2)5m【分析】(1)利用平移的性质得到等式30−x40−x=1064,求解即可;(2)设道路的宽度为ym,根据草坪的面积是地面面积的二分之一列得方程解答.【详解】解:(1)设道路的宽度是xm,则30−x40−x=1064,解得x1=2,x2=68(舍去),答:道路的宽度为2m;(2)设道路的宽度为ym,则40−2y30−2y=12×40×30解得y1=5,y2=30(不合题意,舍去),答:道路的宽度为5m.【点睛】此题考查了一元二次方程的实际应用,找准等量关系,正确列出一元二次方程是解题的关键.【变式8-2】(2023春·广东惠州·九年级校考开学考试)用54m长的竹栅栏围一个矩形菜园,菜园的一边靠长为am的墙,另三边用竹栅栏围成,宽度都是1m,设与墙垂直的一边长为xm.(1)当a=41时,矩形菜园面积是320m2,求x;(2)当a足够大时,问矩形菜园的面积能否达到400m2?【答案】(1)x的值为8或20(2)矩形菜园的面积不能达到400m2【分析】(1)设与墙垂直的一边长为xm,则与墙平行的一边长为54−2x+2m,可得:x54−2x+2=320,再解方程并检验即可;(2)先建立方程x54−2x+2=400,再计算△=−282−4×1×200=−16

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map