2024-2025学年江苏省淮安市涟水一中高三(上)段考数学试卷(9月份)(含答案)
展开
这是一份2024-2025学年江苏省淮安市涟水一中高三(上)段考数学试卷(9月份)(含答案),共7页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={x|−13,x+4x−1的最小值是5
D. 函数y=ax−1+1(a>0,a≠1)过定点(1,2)
10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则下列说法正确的是( )
A. f(b)=−3B. f(−3)=13
C. f(x)在(−∞,0)上是单调减函数D. 函数f(x)仅有一个零点
11.下列函数的最小值为2的有( )
A. y=x2−2x+2,x∈[0,8]B. y=x2−2x+2x−1,x∈(1,4]
C. y=14x+12⋅11−2x,x∈(0,12)D. y= x2+1+1 x2+1
三、填空题:本题共3小题,每小题5分,共15分。
12.函数f(x)=ln(3+x)+ 1−ex的定义域为______.
13.已知函数f(x)=x3+2f′(1)x2+3,则f(3)= ______.
14.已知函数f(x)=lnx+x−5,g(x)=ex+x−5(其中e为自然对数的底数).设m,n分别为f(x),g(x)的零点,则en+lnm= ______.
四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。
15.(本小题13分)
已知集合A={x|x2+2x−30).
(1)求(12)a⋅(12)2b的取值范围;
(2)求1a+5b的最小值;
(3)若1a2+a2b2−2ba>m恒成立,求m的取值范围.
19.(本小题17分)
已知函数f(x)=2xlnx−x33+x−1.
(1)求曲线y=f(x)在x=1处的切线方程;
(2)若y=f(x)在点A处的切线为l1,函数g(x)=ex−e−x的图象在点B处的切线为l2,l1//l2,求直线AB的方程.
参考答案
1.B
2.C
3.C
4.D
5.D
6.A
7.D
8.D
9.ABD
10.AD
11.BCD
12.(−3,0]
13.12
14.5
15.解:(1)解不等式x2+2x−3
相关试卷
这是一份[数学]2024~2025学年江苏省淮安市涟水一中高三(上)段考试卷(9月份)(含答案),共6页。
这是一份[数学]2024~2025学年江苏省淮安市涟水一中高三(上)段考试卷(9月份)(有答案),共7页。
这是一份2024-2025学年广东省惠州一中高二(上)段考数学试卷(9月份)(含答案),共8页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。