江苏省如皋实验2024年数学九年级第一学期开学调研模拟试题【含答案】
展开
这是一份江苏省如皋实验2024年数学九年级第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形是中心对称图形的是( )
A.B.
C.D.
2、(4分)在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是( )
A.斜边长为10cmB.周长为25cm
C.面积为24cm2D.斜边上的中线长为5cm
3、(4分)如图,点是正方形的边上一点,把绕点顺时针旋转到的位置.若四边形AECF的面积为20,DE=2,则AE的长为( )
A.4B.C.6D.
4、(4分)一次函数y=-3x+2的图象不经过( )
A.第四象限B.第三象限C.第二象限D.第一象限
5、(4分)在直角三角形ABC中,∠C=90°,AB=8,CD是AB边上的中线,则CD=( )
A.3B.4C.5D.6
6、(4分)如图,四边形和四边形都是正方形,边在轴上,边在轴上,点在边上,反比例函数,在第二象限的图像经过点,则正方形与正方形的面积之差为( )
A.6B.8C.10D.12
7、(4分)如图,已知正比例函数与一次函数的图象交于点.下面四个结论中正确的是( )
A.B.
C.当时,D.当时,
8、(4分)下列等式正确的是( )
A.+=+B.﹣=
C.++=D.+﹣=
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知中,,点为边的中点,若,则长为__________.
10、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.
11、(4分)不等式组的解集是_________.
12、(4分)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2=_____.
13、(4分)抛物线的顶点坐标是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,∠B=90°,AB=3,BC=4,CD=12,AD=13,点E是AD的中点,求CE的长.
15、(8分)六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.
(1)求A、B两种品牌服装每套进价分别为多少元;
(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套.
16、(8分)如图,直线l是一次函数y=kx+b的图象.
(1)求出这个一次函数的解析式.
(2)根据函数图象,直接写出y<2时x的取值范围.
17、(10分)某校举办的八年级学生数学素养大赛共设个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):
若七巧板拼图,趣题巧解,数学应用三项得分分别按折算计入总分,最终谁能获胜?
若七巧板拼图按折算,小麦 (填“可能”或“不可能”)获胜.
18、(10分)求不等式组的正整数解.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系xOy中,直线与x,y轴分别交于点A,B,若将该直线向右平移5个单位,线段AB扫过区域的边界恰好为菱形,则k的值为_____.
20、(4分)若正多边形的一个内角等于,则这个正多边形的边数是_______条.
21、(4分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.
22、(4分)如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.
23、(4分)分解因式:2m2-8=_______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,是正方形的边上的动点,是边延长线上的一点,且,,设,.
(1)当是等边三角形时,求的长;
(2)求与的函数解析式,并写出它的定义域;
(3)把沿着直线翻折,点落在点处,试探索:能否为等腰三角形?如果能,请求出的长;如果不能,请说明理由.
25、(10分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
(1)求一次函数和反比例函数解析式.
(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
(3)根据图象,直接写出不等式的解集.
26、(12分)如图,利用两面靠墙(墙足够长),用总长度37米的篱笆(图中实线部分)围成一个矩形鸡舍ABCD,且中间共留三个1米的小门,设篱笆BC长为x米.
(1)AB=_____米.(用含x的代数式表示)
(2)若矩形鸡舍ABCD面积为150平方米,求篱笆BC的长.
(3)矩形鸡舍ABCD面积是否有可能达到210平方米?若有可能,求出相应x的值;若不可能,则说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误.
故选:C.
本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、B
【解析】
试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,
∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;
∴斜边 故选项A不符合题意;
∴斜边上的中线长为5cm,故选项D不符合题意;
∵三边长分别为6cm,8cm,10cm,
∴三角形的周长=24cm,故选项B符合题意,
故选B.
点睛:直角三角形斜边的中线等于斜边的一半.
3、D
【解析】
利用旋转的性质得出四边形 AECF的面积等于正方形 ABCD的面积,进而可求
出正方形的边长,再利用勾股定理得出答案.
【详解】
绕点顺时针旋转到的位置.
四边形的面积等于正方形的面积等于20,
,
,
中,
故选:.
本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应
边关系是解题关键.
4、B
【解析】
根据一次函数的图像与性质,结合k=-30求解即可.
【详解】
∵k=-30,
∴一次函数y=-3x+2的图象经过一二四象限,不经过第三象限.
故选B.
题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
5、B
【解析】
根据直角三角形斜边上的中线等于斜边的一半求解即可.
【详解】
解:∵∠ACB=90°,AB=8,CD为AB边上的中线,
∴CD=AB=×8=1.
故选:B.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
6、B
【解析】
设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),根据E在反比例函数上得到(a+b)(a-b)=8,再求出S正方形AOBC=a2,S正方形CDEF=b2,即可求出面积之差.
【详解】
设正方形AOBC的边长为a,正方形CDEF的边长为b,
则E(a-b,a+b),
∵E在反比例函数上
∴(a+b)(a-b)=8,即a2 -b2=8
∴S正方形AOBC-S正方形CDEF=a2-b2=8
故选B.
此题主要考查反比例函数的图像,解题的关键是根据题意找到E点坐标.
7、A
【解析】
利用两函数图象结合与坐标轴交点进而分别分析得出答案.
【详解】
∵,经过第一、三象限,
∴a>0,故A正确;
∵与y轴交在负半轴,
∴b>0,故B错误;
∵正比例函数,经过原点,
∴当x2时, ,故D错误。
故选:A.
此题考查一次函数和正比例函数的图象与性质,解题关键在于结合函数图象进行判断.
8、D
【解析】
根据三角形法则即可判断.
【详解】
∵,
∴ ,
故选D.
本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
∵∠ACB=90°,D为AB的中点,
∴AB=2CD=1,
故答案为:1.
本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.
10、x>1.
【解析】
∵直线y=x+b与直线y=kx+6交于点P(1,5),
∴由图象可得,当x>1时,x+b>kx+6,
即不等式x+b>kx+6的解集为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
11、x>1
【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出即可.
【详解】
∵解不等式x-1≥0得:x≥1,
解不等式4-1x<0得:x>1,
∴不等式组的解集为x>1,
故答案是:x>1.
考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.
12、-3
【解析】
根据一元二次方程根与系数的关系即可解答.
【详解】
由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2
∴x1+x2+x1x2=﹣3
故答案为﹣3
本题考查了一元二次方程根与系数的关系,解题的关键是熟练运用根与系数的关系.
13、
【解析】
根据顶点式函数表达式即可写出.
【详解】
抛物线的顶点坐标是
故填
此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的解析式特点.
三、解答题(本大题共5个小题,共48分)
14、6.5
【解析】
在Rt△ABC中,由勾股定理可求得AC=5,由勾股定理的逆定理判定△ACD为直角三角形,然后根据在直角三角形中,斜边上的中线等于斜边的一半即可得解.
【详解】
解:在Rt△ABC中,∠B=90°,
∵AB=3,BC=4,
∴,
∵CD=12,AD=13,
∴AC2+CD2=52+122=169=AD2,
∴△ACD是直角三角形,
∵点E是AD的中点,
∴CE=.
本题考查勾股定理,勾股定理的逆定理和直角三角形斜边上的中线,学生需熟练掌握其内容.
15、(1)A、B两种品牌服装每套进价分别为100元、75元;(2)17套.
【解析】
(1)首先设A品牌服装每套进价为x元,则B品牌服装每套进价为(x-25)元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍.”列出方程,解方程即可;
(2)首先设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a+(95-75)(2a+4)>1200,再解不等式即可.
【详解】
解:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为元,由题意得:,
解得:,
经检验:是原分式方程的解,
,
答:A、B两种品牌服装每套进价分别为100元、75元;
(2)设购进A品牌的服装a套,则购进B品牌服装套,由题意得:
,
解得:,
答:至少购进A品牌服装的数量是17套.
本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.
16、(1)y=x+1;(1)x<1
【解析】
(1)将(﹣1,0)、(1,1)两点代入y=kx+b,解得k,b,可得直线l的解析式;
(1)根据函数图象可以直接得到答案.
【详解】
解:(1)将点(﹣1,0)、(1,1)分别代入y=kx+b,得:,
解得.
所以,该一次函数解析式为:y=x+1;
(1)由图象可知,当y<1时x的取值范围是:x<1.
故答案为(1)y=x+1;(1)x<1.
本题主要考查了待定系数法求一次函数的解析式,利用代入法是解答此题的关键.
17、(1)小麦获胜;(2)不可能
【解析】
(1)按照加权平均数的算法直接结合表格信息进行计算,然后加以比较即可;
(2)首先设趣味巧解占,数学应用占,根据题意分别算出小米与小麦的总分,再者利用作差法比较二者总分的大小,最后进一步分析即可得出答案.
【详解】
(1)由题意可得:
小米总分为:(分),
小麦总分为:(分),
∵,
∴小麦获胜;
(2)设趣味巧解占,数学应用占,
则小米总分为:(分),
小麦总分为:(分),
∵,
∴
=
=
=,
∵,
∴小米总分大于小麦总分,
∴小麦不可能获胜,
故答案为:不可能.
本题主要考查了平均数的计算以及作差法比较大小,熟练掌握相关方法是解题关键.
18、正整数解是1,2,3,1.
【解析】
先分别求出每一个不等式的解集,然后根据不等式组解集的确定方法得到解集,即可得到正整数解.
【详解】
解:,
解不等式①,得x>﹣2,
解不等式②,得x≤,
不等式组的解集是﹣2<x≤,
不等式组的正整数解是1,2,3,1.
本题考查了解一元一次不等式组,熟知一元一次不等式组的解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据菱形的性质知AB=2,由一次函数图象的性质和两点间的距离公式解答.
【详解】
令y=0,则x=-,即A(-,0).
令x=0,则y=3,即B(0,3).
∵将该直线向右平移2单位,线段AB扫过区域的边界恰好为菱形,
∴AB=2,则AB2=1.
∴(-)2+32=1.
解得k=.
故答案是:.
考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=2.
20、12
【解析】
首先根据求出外角度数,再利用外角和定理求出边数.
【详解】
∵正多边形的一个内角等于150°,
∴它的外角是:180°−150°=30°,
∴它的边数是:360°÷30°=12.
故答案为:12.
此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式
21、84或24
【解析】
分两种情况考虑:
①当△ABC为锐角三角形时,如图1所示,
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD+DC=9+5=14,
则S△ABC=BC⋅AD=84;
②当△ABC为钝角三角形时,如图2所示,
∵AD⊥BC,
∴∠ADB=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD−DC=9−5=4,
则S△ABC=BC⋅AD=24.
综上,△ABC的面积为24或84.
故答案为24或84.
点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.
22、AB的中点.
【解析】
若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.
【详解】
当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:
∵∠BAC=90°,AB=AC,D为BC中点,
∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,
∴△ABD是等腰直角三角形,
当P为AB的中点时,DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四边形APDQ为矩形,
又∵DP=AP=AB,
∴矩形APDQ为正方形,
故答案为AB的中点.
此题考查正方形的判定,等腰直角三角形,解题关键在于证明△ABD是等腰直角三角形
23、2(m+2)(m-2)
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.
【详解】
2m2-8,
=2(m2-4),
=2(m+2)(m-2)
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.
二、解答题(本大题共3个小题,共30分)
24、(1);(1);(3)答案见解析.
【解析】
(1)当△BEF是等边三角形时,有∠ABE=∠ABC-∠EBC=90°-60°=30°,则可解Rt△ABE,求得BF即BE的长.
(1)作EG⊥BF,垂足为点G,则四边形AEGB是矩形,在Rt△EGF中,由勾股定理知,EF1=(BF-BG)1+EG1.即y1=(y-x)1+111.故可求得y与x的关系.
(3)当把△ABE沿着直线BE翻折,点A落在点A'处,应有∠BA'F=∠BA'E=∠A=90°,若△A'BF成为等腰三角形,必须使A'B=A'F=AB=11,有FA′=EF-A′E=y-x=11,故可由(1)得到的y与x的关系式建立方程组求得AE的值.
【详解】
解:(1)当是等边三角形时,,
∵,
∴,
∴;
(1)作,垂足为点,
根据题意,得,,.
∴.
∴所求的函数解析式为;
(3)∵,
∴点落在上,
∴,,
∴要使成为等腰三角形,必须使.
而,,
∴,由(1)关系式可得:,
整理得,
解得,
经检验:都原方程的根,
但不符合题意,舍去,
所以当时,为等要三角形.
本题利用了等边三角形和正方形、矩形、等腰三角形的性质,勾股定理求解.
25、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
【解析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
【详解】
(1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
∴b=,k=﹣6
∴一次函数解析式y=﹣,反比例函数解析式y=.
(2)根据题意得: ,
解得: ,
∴S△ABF=×4×(4+2)=12
(3)由图象可得:x<﹣2或0<x<4
本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
26、(1)40-2x(2)15米或5米(3)不可能
【解析】
(1)直接由图可知AB=总长度+3-2x.
(2) 由题意得:(40﹣2x)x=150,解得即可.
(3)由题意判断(40﹣2x)x=210是否有解即可.
【详解】
(1)∵中间共留三个 1 米的小门,
∴篱笆总长要增加 3 米,篱笆变为 40 米, 设篱笆 BC 长为 x 米,
∴AB=40﹣2x(米) 故答案为40﹣2x.
(2)设篱笆 BC 长为 x 米. 由题意得:(40﹣2x)x=150解得:x=15,x=5
∴篱笆 BC 的长为:15 米或 5 米.
(3)不可能.
∵假设矩形鸡舍 ABCD 面积是 210 平方米, 由题意得:(40﹣2x)x=210,
整理得:x2﹣20x+105=0, 此方程中△<0,
∴方程无解.
故矩形鸡舍 ABCD 面积不可能达到 210 平方米.
本题考查的知识点是一元二次方程的应用,解题的关键是熟练的掌握一元二次方程的应用.
题号
一
二
三
四
五
总分
得分
批阅人
七巧板拼图
趣题巧解
数学应用
小米
小麦
相关试卷
这是一份江苏省南京市高淳区2025届数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省连云港市新海实验中学2024年九年级数学第一学期开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省泗阳县九年级数学第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。