江苏省泗洪县联考2024年九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在以下统计量中,该鞋厂最关注的是( )
A.平均数B.中位数C.众数D.方差
2、(4分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为( )
A.x>B.
A.甲队B.乙队C.丙队D.哪一个都可以
4、(4分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )
A.B.2C.2D.4
5、(4分)数据2,6,4,5,4,3的平均数和众数分别是( )
A.5和4B.4和4C.4.5和4D.4和5
6、(4分)如图,□ABCD的周长是28㎝,△ABC的周长是22㎝,则AC的长为( )
A.6㎝B.12㎝C.4㎝D.8㎝
7、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )
A.B.C.D.2
8、(4分)下列方程有两个相等的实数根的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.
10、(4分)如图,在平面直角坐标系xOy中,四边形0ABC是平行四边形,且A(4,0),B(6,2),则直线AC的解析式为___________.
11、(4分)化简:=_____.
12、(4分)已知一次函数y=﹣2x+4,完成下列问题:
(1)在所给直角坐标系中画出此函数的图象;
(2)根据函数图象回答:
方程﹣2x+4=0的解是______________;当x_____________时,y>2;当﹣4≤y≤0时,相应x的取值范围是_______________.
13、(4分)将一次函数的图象沿轴方向向右平移1个单位长度得到的直线解析式为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AB=AC,点,在边上,.求证:.
15、(8分)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)扇形图中的“1.5小时”部分圆心角是多少度?
(3)求抽查的学生劳动时间的众数、中位数.
16、(8分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.
(1)求反比例函数的解析式;
(2)若点P在x轴上,且的面积为5,求点P的坐标.
17、(10分)已知:在中,对角线、交于点,过点的直线交于点,交于点.
求证:,.
18、(10分)如图,直线与直线相交于点.
(1)求,的值;
(2)根据图像直接写出时的取值范围;
(3)垂直于轴的直线与直线,分别交于点,,若线段长为2,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8 cm,正方形A的面积是10cm1,B的面积是11 cm1,C的面积是13 cm1,则D的面积为____cm1.
20、(4分)如图,一架云梯长米,斜靠在一面墙上,梯子顶端离地面米,要使梯子顶端离地面米,则梯子的底部在水平面方向要向左滑动______米.
21、(4分)已知,如图,正方形ABCD的面积为25,菱形PQCB的面积为20,则阴影部分的面积为________.
22、(4分)计算的结果为______.
23、(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为: .
(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;
(3)求△AEF周长的最小值.
25、(10分)已知一次函数的图象如图所示,
(1)求的值;
(2)在同一坐标系内画出函数的图象;
(3)利用(2)中你所面的图象,写出时,的取值范围.
26、(12分)如图,四边形是菱形,,垂足分别为点.
求证:;
当菱形的对角线,BD=6时,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据众数的定义即可判断.
【详解】
根据题意鞋厂最关注的是众数,
故选C.
此题主要考查众数的定义,解题的关键是熟知众数的性质.
2、B
【解析】
由mx﹣2<(m﹣2)x+1,即可得到x<;由(m﹣2)x+1<mx,即可得到x>,进而得出不等式组mx﹣2<kx+1<mx的解集为<x<.
【详解】
把(,m)代入y1=kx+1,可得
m=k+1,
解得k=m﹣2,
∴y1=(m﹣2)x+1,
令y3=mx﹣2,则
当y3<y1时,mx﹣2<(m﹣2)x+1,
解得x<;
当kx+1<mx时,(m﹣2)x+1<mx,
解得x>,
∴不等式组mx﹣2<kx+1<mx的解集为<x<,
故选B.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
3、A
【解析】
分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
详解:∵S甲2=1.44,S乙2=18.8,S丙2=25,∴S甲2最小,∴他应选甲队;
故选A.
点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4、C
【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
【详解】
解:∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选B.
本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
5、B
【解析】
根据平均数和众数的概念求解.
【详解】
这组数据的平均数是:(2+6+4+5+4+3)=4;
∵4出现了2次,出现的次数最多,
∴这组数据的众数是4;
故选B.
本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.
6、D
【解析】
∵ □的周长是28 cm,∴(cm).∵ △的周长是22 cm,
∴(cm).
7、A
【解析】
连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC=,CF=3,则∠ACF=90°,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长.
【详解】
连接AC、CF,如图,
∵四边形ABCD和四边形CEFG都是正方形,
∴∠ACD=45°,FCG=45°,AC=BC=,CF=CE=3,
∴∠ACF=45°+45°=90°,
在Rt△ACF中,AF=,
∵H是AF的中点,
∴CH=AF= .
故选A.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.
8、B
【解析】
分别计算各选项的判别式△值,然后和0比较大小,再根据一元二次方程根与系数的关系就可以找出符合题意的选项.
【详解】
A、△=b2 -4ac=1+24=25>0,方程有两个不相等的实数根,不符合题意;
B、△=b2 -4ac=36-36=0,方程有两个相等的实数根,符合题意;
C、△=b2 -4ac=25-40=-15<0,方程没有实数根,不符合题意;
D、△=b2 -4ac=81>0,方程有两个不相等的实数根,不符合题意,
故选B.
本题考查了一元二次方程根的情况与与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.
【详解】
∵四边形ABCD是平行四边形,
∴BC=AD=6,
∵E为BC的中点,AC⊥AB,
∴AE=BC=1,
故答案为:1.
本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
10、y=-x+1
【解析】
根据平行四边形的性质得到OA∥BC,OA=BC,由已知条件得到C(2,2),设直线AC的解析式为y=kx+b,列方程组即可得到结论.
【详解】
解:∵四边形OABC是平行四边形,
∴OA∥BC,OA=BC,
∵A(1,0),B(6,2),
∴C(2,2),
设直线AC的解析式为y=kx+b,
∴,
解得:,
∴直线AC的解析式为y=-x+1,
故答案为:y=-x+1.
本题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标.
11、-6
【解析】
根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:
【详解】
,
故答案为-6
12、(1)见解析;(2)x=2,<1,2≤x≤1
【解析】
(1)列表,描点,连线即可;
(2)利用函数图象得出y=0时,x的值;观察y>2时,函数图象对应的x的取值;观察函数图象,即可确定当﹣1≤y≤0时,x对应的取值范围.
【详解】
(1)列表:
描点,连线可得:
(2)根据函数图象可得:
当y=0时,x=2,故方程﹣2x+1=0的解是x=2;
当x<1时,y>2;
当﹣1≤y≤0时,相应x的取值范围是2≤x≤1.
故答案为:x=2;<1;2≤x≤1.
本题考查的是作一次函数的图象及一次函数与不等式的关系,能把式子与图象结合起来是关键.
13、
【解析】
平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移1个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.
【详解】
解:可设新直线解析式为y=2x+b,
∵原直线y=2x经过点(0,0),
∴向右平移1个单位,图像经过(1,0),
代入新直线解析式得:b=,
∴新直线解析式为:.
故答案为.
此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后函数图像经过的一个具体点.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
试题分析:证明△ABE≌△ACD 即可.
试题解析:法1:
∵AB=AC,
∴∠B=∠C,
∵AD=CE,
∴∠ADE=∠AED,
∴△ABE≌△ACD,
∴BE=CD ,
∴BD=CE,
法2:如图,作AF⊥BC于F,
∵AB=AC,
∴BF=CF,
∵AD=AE,
∴DF=EF,
∴BF-DF=CF-EF,
即BD=CE.
15、(1)详见解析;(2)144°;(3)众数为1.5小时、中位数为1.5小时.
【解析】
试题分析:(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,
(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;
(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.
解:(1)根据题意得:30÷30%=100(人),
∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),
补全统计图,如图所示:
(2)根据题意得:40%×360°=144°,
则扇形图中的“1.5小时”部分圆心角是144°;
(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.
16、(1) (2)P的坐标为或
【解析】
(1)利用点A在上求a,进而代入反比例函数求k即可;
(2)设,求得C点的坐标,则,然后根据三角形面积公式列出方程,解方程即可.
【详解】
(1)把点代入,得,
∴
把代入反比例函数,
∴;
∴反比例函数的表达式为;
(2)∵一次函数的图象与x轴交于点C,
∴,
设,
∴,
∴,
∴或,
∴P的坐标为或.
本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.
17、证明见解析.
【解析】
首先根据平行四边形的性质可得AB∥CD,OA=OC.根据平行线的性质可得∠EAO=∠FCO,进而可根据ASA定理证明△AEO≌△CFO,再根据全等三角形的性质可得OE=OF,AE=CF.
【详解】
证明:∵ 四边形ABCD为平行四边形,且对角线AC和BD交于点O,
∴,,
∴∠EAO=∠FCO,
∵∠AOE=∠COF,
∴ △AOE△COF(ASA),
∴ OE=OF,AE=CF.
本题考查了平行四边形的性质和全等三角形的判定,掌握全等三角形判定的方法是本题解题的关键.
18、(1),;(2);(3)或
【解析】
(1)将点代入到直线中,即可求出b的值,然后将点P的坐标代入直线中即可求出m的值;
(2)根据图象即可得出结论;
(3)分别用含a的式子表示出点C和点D的纵坐标,再根据CD的长和两点之间的距离公式列出方程即可求出a.
【详解】
解:(1)∵点在直线上
∴
∵点在直线上,
∴
∴
(2)由图象可知:当时,;
(3)当时,,当时,
∵
∴
解得或
此题考查的是一次函数的图象及性质,掌握根据直线上的点求直线的解析式、一次函数与一元一次不等式的关系和直角坐标系中两点之间的距离公式是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、30
【解析】
根据正方形的面积公式,运用勾股定理可得结论:四个小正方形的面积之和等于最大的正方形的面积64 cm1,问题即得解决.
【详解】
解:如图记图中三个正方形分别为P、Q、M.
根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P、Q的面积的和是M的面积.
即A、B、C、D的面积之和为M的面积.
∵M的面积是81=64,
∴A、B、C、D的面积之和为64,设正方形D的面积为x,
∴11+10+13+x=64,
∴x=30,
故答案为30.
本题主要考查勾股定理,把正方形的面积转化为相关直角三角形的边长,再通过勾股定理探索图形面积的关系是解决此类问题常见的思路.
20、
【解析】
如图,先利用勾股定理求出BC的长,再利用勾股定理求出CE的长,根据BE=BC-CE即可得答案.
【详解】
如图,AB=DE=10,AC=6,DC=8,∠C =90°,
∴BC==8,
CE==6,
∴BE=BC-CE=2(米),
故答案为2.
本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.
21、1
【解析】
由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
【详解】
∵正方形ABCD的面积是25,
∴AB=BC=BP=PQ=QC=5,
又∵S菱形PQCB=PQ×EC=5×EC=20,
∴S菱形PQCB=BC•EC,
即20=5•EC,
∴EC=4,
在Rt△QEC中,EQ==3;
∴PE=PQ-EQ=2,
∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
故答案为1.
此题主要考查了菱形的性质和面积计算以及正方形的性质,根据已知得出EC=8,进而求出EQ的长是解题关键.
22、
【解析】
先分母有理化,然后进行二次根式的乘法运算.
【详解】
解:原式==(2+)= .
故答案为:2+1.
本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
23、35.
【解析】
利用四边形内角和得到∠BAD’,从而得到∠α
【详解】
如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35
本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补
二、解答题(本大题共3个小题,共30分)
24、(1)AE=EF=AF;(2)详见解析;(3)6.
【解析】
(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;
(2)欲证明BE=CF,只要证明△BAE≌△CAF即可;
(3)根据垂线段最短可知;当AE⊥BC时,△AEF的周长最小;
【详解】
(1)AE=EF=AF.
理由:如图1中,连接AC,
∵四边形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等边三角形,
∴∠BAC=∠DAC=60°
∵BE=EC,
∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°,
∴∠CAF=∠DAF=30°,
∴AF⊥CD,
∴AE=AF(菱形的高相等)
∴△AEF是等边三角形,
∴AE=EF=AF.
故答案为AE=EF=AF;
(2)证明:如图2,
∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
∴△BAE≌△CAF(ASA)
∴BE=CF.
(3)由(1)可知△AEF是等边三角形,
∴当AE⊥BC时,AE的长最小,即△AEF的周长最小,
∵AE=EF=AF=2,
∴△AEF的周长为6.
本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.
25、(1);(2)详见解析;(3)
【解析】
(1)由图像可知A,B点的坐标,将点坐标代入一次函数表达式即可确定的值;(2)取直线与x轴,y轴的交点坐标,描点,连线即可;(3)时,的取值范围即直线在直线上方图像所对应的x的取值,由图像即可知.
【详解】
解:(1)由图像可知,,.
将,两点代入中,
得,解得.
(2)对于函数,
列表:
图象如图:
(3)由图象可得:当时,x的取值范围为:.
本题考查了一次函数的综合应用,确定函数k,b值,画函数图像,根据图像写不等式解集,熟练掌握一次函数的相关知识是解题的关键.
26、(1)见解析;(2).
【解析】
(1)根据菱形的邻边相等,对角相等,证明△ABE与△CBF全等,再根据全等三角形对应边相等即可证明;
(2)先根据菱形的对角线互相垂直平分,求出菱形的边长,再根据菱形的面积等于对角线乘积的一半和底边乘以高两种求法即可求出.
【详解】
(1)证明:四边形是菱形,
,
又,
∴△ABE≌△CBF(AAS)
(2)解:四边形是菱形,
,,,,
,
,
,
.
故答案为:(1)见解析;(2).
本题考查了全等三角形的性质和判定,菱形的性质和面积,注意:菱形的四条边都相等,菱形的对角相等.
题号
一
二
三
四
五
总分
得分
x
2
0
y=﹣2x+1
0
1
x
0
1
y
﹣2
0
江苏省淮安洪泽县联考2024年数学九上开学质量跟踪监视试题【含答案】: 这是一份江苏省淮安洪泽县联考2024年数学九上开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省周口西华县联考2025届数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份河南省周口西华县联考2025届数学九上开学质量跟踪监视模拟试题【含答案】,共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省宜兴市陶都中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2025届江苏省宜兴市陶都中学数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。