终身会员
搜索
    上传资料 赚现金

    江苏省苏州市吴中学区横泾中学2024年九年级数学第一学期开学综合测试试题【含答案】

    立即下载
    加入资料篮
    江苏省苏州市吴中学区横泾中学2024年九年级数学第一学期开学综合测试试题【含答案】第1页
    江苏省苏州市吴中学区横泾中学2024年九年级数学第一学期开学综合测试试题【含答案】第2页
    江苏省苏州市吴中学区横泾中学2024年九年级数学第一学期开学综合测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省苏州市吴中学区横泾中学2024年九年级数学第一学期开学综合测试试题【含答案】

    展开

    这是一份江苏省苏州市吴中学区横泾中学2024年九年级数学第一学期开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)D、E是△ABC的边AB、AC的中点,△ABC、△ADE的面积分别为S、S1,则下列结论中,错误的是( )
    A.DE∥BCB.DE=BCC.S1=SD.S1=S
    2、(4分)若点在第四象限,则的取值范围是( )
    A.B.C.D.
    3、(4分)某中学制作了108件艺术品,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装5件艺术品,单独使用B型包装箱比单独使用A型包装箱可少用2个.设B型包装箱每个可以装x件艺术品,根据题意列方程为( )
    A.B.
    C.D.
    4、(4分)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()
    A.18B.28C.36D.46
    5、(4分)某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是( )
    A.4和7B.5和7C.5和8D.4和17
    6、(4分)下列运算,正确的是( )
    A.B.C.D.
    7、(4分)打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )
    A.B.
    C.D.
    8、(4分)下列图形不是中心对称图形的是
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.
    10、(4分)化成最简二次根式后与最简二次根式的被开方数相同,则a的值为______.
    11、(4分)要使在实数范围内有意义,a 应当满足的条件是_____.
    12、(4分)若设A=,当=4时,记此时A的值为;当=3时,记此时A的值为;……则关于的不等式的解集为______.
    13、(4分)小明参加岗位应聘中,专业知识、工作经验、仪表形象三项的得分分别为:分、分、分.若这三项的重要性之比为,则他最终得分是_________分.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,求CF的长.
    15、(8分)如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,交于点,在上取点,使.
    (1)求证:;
    (2)求的度数;
    (3)若,求的长.
    16、(8分)传统节日“春节”到来之际,某商店老板以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.
    (1)请写出每月销售该商品的利润y(元)与单价x(元)间的函数关系式;
    (2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?
    17、(10分)如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东航行,乙船向南偏东航行,3小时后,甲船到达C岛,乙船到达B岛,若C、B两岛相距102海里,问乙船的航速是多少?
    18、(10分)解不等式组,并写出它的所有非负整数解.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
    20、(4分)用换元法解方程+3=0时,如果设=y,那么将原方程变形后所得的一元二次方程是_____.
    21、(4分)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.
    22、(4分)要使分式的值为1,则x应满足的条件是_____
    23、(4分)已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.
    (1)求证:△BDF是等腰三角形;
    (2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
    ①判断四边形BFDG的形状,并说明理由;
    ②若AB=6,AD=8,求FG的长.
    25、(10分)计算:(1)
    (2)已知,试求以a、b、c为三边的三角形的面积.
    26、(12分)阅读下面材料:数学课上,老师出示了这祥一个问题:
    如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:
    小柏:“通过观察和度量,发现点H是线段EF的中点”。
    小吉:“∠BFE=75°,说明图形中隐含着特殊角”;
    小亮:“通过观察和度量,发现CO⊥BD”;
    小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;
    小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;
    老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.
    请回答:(1)证明FH=EH;
    (2)求的值;
    (3)若AB=4.MH=,则GE的长度为_____________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由D、E是△ABC的边AB、AC的中点得出DE是△ABC的中位线,得出DE∥BC,DE=BC,易证△ADE∽△ABC得出,即可得出结果.
    【详解】
    ∵D、E是△ABC的边AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,DE=BC,
    ∵DE∥BC,∠A=∠A,
    ∴△ADE∽△ABC,
    ∴,
    即S1=S,
    ∴D错误,
    故选:D.
    考查了相似三角形的判定与性质、三角形中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.
    2、D
    【解析】
    根据第四象限内点的坐标特征为(+,-)列不等式求解即可.
    【详解】
    由题意得
    2m-1 CF=6
    ∴点F不可能落在直线AD上
    ∴.不存在∠EAF=90
    综上所述:BE=3或6
    故答案为:3或6
    本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.
    10、1.
    【解析】
    先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.
    【详解】
    ∵与最简二次根式是同类二次根式,且=1,
    ∴a+1=3,解得:a=1.
    故答案为1.
    本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
    11、a⩽3.
    【解析】
    根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.
    【详解】
    ∵在实数范围内有意义,
    ∴3−a⩾0,
    解得a⩽3.
    故答案为:a⩽3.
    此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.
    12、.
    【解析】
    先对A化简,然后根据题意求出f(3)+f(4)+...+f(119)的值,然后求不等式的解集即可解答本题.
    【详解】
    解:A===
    f(3)=,…,f(119)=
    所以:f(3)+…+f(119)=+…+==
    解得:,故答案为.
    本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于中等题型.
    13、15.1
    【解析】
    根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
    【详解】
    根据题意得:(分),
    答:他最终得分是15.1分.
    故答案为:15.1.
    本题考查了加权平均数的概念.在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.
    三、解答题(本大题共5个小题,共48分)
    14、.
    【解析】
    证△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,设CF=x,则EF=DF=4﹣x,在Rt△CFE中,由勾股定理得出方程(4﹣x)2=x2+22,求出x即可.
    【详解】
    ∵AF平分∠DAE,
    ∴∠DAF=∠EAF,
    ∵四边形ABCD是矩形,
    ∴∠D=∠C=90°,AD=BC=5,AB=CD=4,
    ∵EF⊥AE,
    ∴∠AEF=∠D=90°,
    在△AEF和△ADF中,

    ∴△AEF≌△ADF(AAS),
    ∴AE=AD=5,EF=DF,
    在△ABE中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,
    ∴CE=5﹣3=2,
    设CF=x,则EF=DF=4﹣x,
    在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,
    ∴(4﹣x)2=x2+22,
    x=,
    CF=.
    本题考查了矩形的性质,全等三角形的性质和判定,角平分线性质,勾股定理等知识点,主要考查学生推理和计算能力,用了方程思想.
    15、(1)见解析;(2)15°;(3)2+2.
    【解析】
    (1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折叠的性质得到一对角相等,利用等角对等边即可得证;
    (2)由(1)得到△ABB′为等边三角形,利用矩形的性质及等边三角形的内角为60°,即可求出所求角度数;
    (3)连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,分别利用三角函数定义求出MF与AM,根据AM=BM,即BM+MF=BF即可求出.
    【详解】
    (1)证明:∵在Rt△ABC中,AC=2AB,
    ∴∠ACB=∠AC′B′=30°,∠BAC=60°,
    由旋转可得:AB′=AB,∠B′AC′=∠BAC=60°,
    ∴∠EAC′=∠AC′B′=30°,

    ∴AE=C′E;
    (2)解:由(1)得到△ABB′为等边三角形,
    ∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,
    ∵BB'=B'F,
    ∴∠FBB′=∠B'FB=15°;
    (3)解:连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,
    ∴∠AFB′=45°,∠BB′F=150°,
    ∵BB′=B′F,
    ∴∠B′FB=∠B′BF=15°,
    ∴∠AFM=30°,∠ABF=45°,
    在Rt△AMF中,AM=BM=AB•cs∠ABM=2=2,
    在Rt△AMF中,MF=AM=2,
    则BF=2+2.
    此题参考四边形综合题,旋转的性质,矩形的性质,锐角三角函数定义,等边三角形、直角三角形的性质,熟练掌握旋转的性质是解题的关键.
    16、(1)y=-10x2+100x+6000(0≤x≤30);(2) 单价定为5元时,每月销售商品的利润最大,最大利润为6250元.
    【解析】
    试题分析:(1)单价上涨x(元),由单价每上涨1元,该商品每月的销量就减少10件得到销售量为(300-10x)件,根据利润等于销售价减成本得到每件的利润为(80-60+x),因此每月销售该商品的利润y等于月销售量×每件的利润;
    (2)把(1)得到的函数关系式进行配方得到y=-10(x-5)2+6250,然后根据二次函数的最值问题易得到单价定为多少元时,每月销售该商品的利润最大.
    试题解析:(1)y=(80-60+x)(300-10x)
    =-10x2+100x+6000(0≤x≤30);
    (2)y=-10x2+100x+6000
    =-10(x-5)2+6250
    ∵a=-10<0,
    ∴当x=5时,y有最大值,其最大值为6250,
    即:单价定为5元时,每月销售商品的利润最大,最大利润为6250元.
    考点:二次函数的应用.
    17、30(海里/时)
    【解析】
    通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形,可以通过勾股定理计算出AB的长度,然后求乙船的速度.
    【详解】
    通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形
    又AC为甲船航行的路程,则AC=16×3=48
    由可知:
    AB=
    所以乙船的航速为90÷3=30(海里/时)
    故答案为30(海里/时)
    本题考察了方位角的判断,构造出直角三角形,运用勾股定理解题,需要清楚的是勾股定理是指,直角三角形中两个直角边的平方和等于斜边的平方.
    18、非负整数解是:0,1、1.
    【解析】
    分别解出两不等式的解集再求其公共解.
    【详解】
    解:
    解不等式 ①,得x>-1 .
    解不等式 ②,得.
    ∴原不等式组的解集是.
    ∴原不等式组的非负整数解为0,1,1.
    错因分析 较易题.失分原因:①没有掌握一元一次不等式组的解法;②取非负整数解时多取或少取导致出错.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    证明△ADD′是等腰直角三角形即可解决问题.
    【详解】
    解:由旋转可知:△ABD≌△ACD′,
    ∴∠BAD=∠CAD′,AD=AD′=2,
    ∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
    ∴DD′=,
    故答案为:.
    本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    20、3y2+3y﹣2=1
    【解析】
    设,则原方程化为3y﹣+3=1,,再整理即可.
    【详解】
    ﹣+3=1,
    设=y,则原方程化为:3y﹣+3=1,
    即3y2+3y﹣2=1,
    故答案为:3y2+3y﹣2=1.
    本题考查了解分式方程,能够正确换元是解此题的关键.
    21、1
    【解析】
    根据边之间的关系,运用勾股定理,列方程解答即可.
    【详解】
    由题意可设两条直角边长分别为x,2x,
    由勾股定理得x2+(2x)2=(1)2,
    解得x1=1,x2=-1舍去),
    所以较短的直角边长为1.
    故答案为:1
    本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.
    22、x=-1.
    【解析】
    根据题意列出方程即可求出答案.
    【详解】
    由题意可知:=1,
    ∴x=-1,
    经检验,x=-1是原方程的解.
    故答案为:x=-1.
    本题考查解分式方程,注意,别忘记检验,本题属于基础题型.
    23、14
    【解析】
    根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.
    【详解】
    解:如图,在菱形ABCD中,BD=2.
    ∵菱形的周长为10,BD=2,
    ∴AB=5,BO=3,
    ∴ AC=3.
    ∴面积
    故答案为 14.
    此题考查了菱形的性质及面积求法,难度不大.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)①菱形,见解析;②.
    【解析】
    (1)根据两直线平行内错角相等及折叠特性判断;
    (2)①根据已知矩形性质及第一问证得邻边相等判断;
    ②根据折叠特性设未知边,构造勾股定理列方程求解.
    【详解】
    (1)证明:如图1,根据折叠,∠DBC=∠DBE,
    又AD∥BC,
    ∴∠DBC=∠ADB,
    ∴∠DBE=∠ADB,
    ∴DF=BF,
    ∴△BDF是等腰三角形;
    (2)①∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴FD∥BG,
    又∵DG∥BE
    ∴四边形BFDG是平行四边形,
    ∵DF=BF,
    ∴四边形BFDG是菱形;
    ②∵AB=6,AD=8,
    ∴BD=10.
    ∴OB= BD=5.
    假设DF=BF=x,∴AF=AD−DF=8−x.
    ∴在直角△ABF中,AB+AF=BF,即6+(8−x) =x,
    解得x= ,
    即BF=,
    ∴FO=,
    ∴FG=2FO=
    此题考查四边形综合题,解题关键在于利用勾股定理进行计算.
    25、(1);(2)以a、b、c为三边的三角形的面积为1.
    【解析】
    (1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;
    (2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.
    【详解】
    解:(1)原式;
    (2)由题意得:,
    ,,,
    ,,,
    ,,
    ∴以a、b、c为三边的三角形是直角三角形.
    ∴它的面积是.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.
    26、(1)见解析;(2) ;(3)
    【解析】
    (1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
    (2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
    (3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.
    【详解】
    (1)如图1,
    连接DE,DF
    ∵正方形ABCD
    ∴AD=CD=CB=AB
    ∠A=∠ADC=∠BCD=∠ABC=90°
    ∴∠DCE=∠A=90°
    ∴在ΔFAD和ΔECD中
    ∴ΔDAF≌ΔDCE(SAS)
    ∴DF=DE
    ∵DH⊥EF
    ∴FH=EH
    (2)如图2,连接BH,
    ∵ΔFAD≌ΔECD
    ∴∠ADF=∠CDE
    ∵∠ADC=90°=∠ADF+∠FDC
    ∴∠EDC+∠FDC=90°
    ∴∠FDE=90°
    ∴DH=EF=EH=FH
    ∵∠FBC=90°
    ∴BH=EF=EH=FH
    ∴BH=DH
    ∴在ΔBHC和ΔDHC中
    ∴ΔBHC≌ΔDHC(SSS)
    ∴∠BCH=∠DCH
    ∴OC⊥BD
    ∴∠HOB=90°
    ∵BH=FH,∠BFE =75°
    ∴∠FBH=∠BFH=75°
    ∵正方形ABCD
    ∴∠ABD=45°,∠HBO=30°
    ∴OH=BH
    ∴;
    (3)解:如图3,连接OA,作MK⊥OA于K.
    由(2)可知:A,O,C共线,
    ∴∠MAK=45°,
    ∵AM=MB=2,
    ∵CG∥AB,

    由△EHG∽△BCG,可得
    本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
    题号





    总分
    得分
    批阅人

    相关试卷

    2025届江苏省苏州市吴中学、吴江、相城区数学九上开学综合测试试题【含答案】:

    这是一份2025届江苏省苏州市吴中学、吴江、相城区数学九上开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省苏州市吴中学区统考九年级数学第一学期开学综合测试试题【含答案】:

    这是一份2024年江苏省苏州市吴中学区统考九年级数学第一学期开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省苏州市吴中学区统考数学九上期末预测试题含答案:

    这是一份2023-2024学年江苏省苏州市吴中学区统考数学九上期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数的最小值是,如图,四边形内接于,若,则等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map