江苏省无锡市惠山区七校2024年数学九上开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将直线向下平移个单位长度得到新直线,则的值为( )
A.B.C.D.
2、(4分)下列各式中,是二次根式的是( )
A.B.C.D.
3、(4分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是( )
A.20°B.25°C.30°D.40°
4、(4分)如图,DE是的中位线,则与四边形DBCE的面积之比是( )
A.B.C.D.
5、(4分)一元二次方程x2﹣4x﹣6=0经过配方可变形为( )
A.(x﹣2)2=10B.(x+2)2=10C.(x﹣4)2=6D.(x﹣2)2=2
6、(4分)等腰中,,用尺规作图作出线段BD,则下列结论错误的是( )
A.B.C.D.的周长
7、(4分)周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )
A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米
8、(4分)下列所叙述的图形中,全等的两个三角形是( )
A.含有45°角的两个直角三角形B.腰相等的两个等腰三角形
C.边长相等的两个等边三角形D.一个钝角对应相等的两个等腰三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:
点到直线的距离公式是:
如:求:点到直线的距离.
解:由点到直线的距离公式,得
根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.
则两条平行线:和:间的距离是______.
10、(4分)如果正比例函数的图象经过点(1,-2),那么k 的值等于 ▲ .
11、(4分)因式分解:___.
12、(4分)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,在下列结论中:①方差是8;②极差是9;③众数是-1;④平均数是-1,其中正确的序号是________.
13、(4分)如图,直线与坐标轴相交于点,将沿直线翻折到的位置,当点的坐标为时,直线的函数解析式是_________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(-)0+(-4)-2-|-|
15、(8分)如图,在直角坐标系中.
若把向上平移2个单位,再向右平移2个单位得,在图中画出,并写出的坐标;
求出的面积.
16、(8分)如图,在矩形ABCD中,AB=8,BC=6,点P、点E分别是边AB、BC上的动点,连结DP、PE.将 △ADP 与 △BPE分别沿DP与PE折叠,点A与点B分别落在点A′,B′处.
(1) 当点P运动到边AB的中点处时,点A′与点B′重合于点F处,过点C作CK⊥EF于K,求CK的长;
(2) 当点P运动到某一时刻,若P,A',B'三点恰好在同一直线上,且A'B'=4 ,试求此时AP的长.
17、(10分).解方程:
(1) (2)
18、(10分)某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.
(1)求一件A种文具的价格;
(2)根据需要,该校准备在该商店购买A、B两种文具共150件.
①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;
②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若方程的两根为,,则________.
20、(4分)若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.
21、(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为_____.
22、(4分)在函数y=中,自变量x的取值范围是____.
23、(4分)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 秒,四边形APQC的面积最小.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1)(结果保留根号);
(2)(a>0,b>0)(结果保留根号).
25、(10分)如图,小亮从点处出发,前进5米后向右转,再前进5米后又向右转,这样走次后恰好回到出发点处.
(1)小亮走出的这个边形的每个内角是多少度?这个边形的内角和是多少度?
(2)小亮走出的这个边形的周长是多少米?
26、(12分)已知关于x的方程x2-3x+c=0有两个实数根.
(1)求c的取值范围;
(2)若c为正整数,取符合条件的c的一个值,并求出此时原方程的根.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
直接根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知:直线y=1x+1向下平移n个单位长度,得到新的直线的解析式是y=1x+1-n,则1-n=-1,
解得n=1.
故选:D.
本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
2、A
【解析】
根据二次根式的定义逐一判断即可.
【详解】
A、是二次根式,故此选项正确;
B、,根号下不能是负数,故不是二次根式;
C、是立方根,故不是二次根式;
D、,根号下不能是负数,故不是二次根式;
故选A.
本题考查了二次根式的定义:形如(a≥0)叫二次根式.
3、A
【解析】
先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.
【详解】
解:∵四边形ABCD是菱形,
∴OD=OB,AB∥CD,BD⊥AC,
∵DH⊥AB,
∴DH⊥CD,∠DHB=90°,
∴OH为Rt△DHB的斜边DB上的中线,
∴OH=OD=OB,
∴∠1=∠DHO,
∵DH⊥CD,
∴∠1+∠2=90°,
∵BD⊥AC,
∴∠2+∠DCO=90°,
∴∠1=∠DCO,
∴∠DHO=∠DCA,
∵四边形ABCD是菱形,
∴DA=DC,
∴∠CAD=∠DCA=20°,
∴∠DHO=20°,
故选A.
本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
4、B
【解析】
首先根据DE是△ABC的中位线,可得△ADE∽△ABC,且DE:BC=1:2;然后根据相似三角形面积的比等于相似比的平方,求出△ADE与△ABC的面积之比是多少,进而求出△ADE与四边形DBCE的面积之比是多少即可.
【详解】
解:∵DE是△ABC的中位线,
∴△ADE∽△ABC,且DE:BC=1:2,
∴△ADE与△ABC的面积之比是1:4,
∴△ADE与四边形DBCE的面积之比是1:1.
故选:B.
(1)此题主要考查了三角形的中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.
(2)此题还考查了相似三角形的面积的比的求法,要熟练掌握,解答此题的关键是要明确:相似三角形面积的比等于相似比的平方.
5、A
【解析】
先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方的形式即可.
【详解】
x2﹣4x=6,
x2﹣4x+4=1,
(x﹣2)2=1.
故选:A.
本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
6、C
【解析】
根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.
【详解】
解:∵等腰△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
由作图痕迹发现BD平分∠ABC,
∴∠A=∠ABD=∠DBC=36°,
∴AD=BD,故A、B正确;
∵AD≠CD,
∴S△ABD=S△BCD错误,故C错误;
△BCD的周长=BC+CD+BD=BC+AC=BC+AB,
故D正确.
故选C.
本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.
7、C
【解析】
解:A.小丽从家到达公园共用时间20分钟,正确;
B.公园离小丽家的距离为2000米,正确;
C.小丽在便利店时间为15﹣10=5分钟,错误;
D.便利店离小丽家的距离为1000米,正确.
故选C.
8、C
【解析】
根据已知条件,结合全等的判定方法对各个选项逐一判断即可.
【详解】
解:A、含有45°角的两个直角三角形,缺少对应边相等,所以两个三角形不一定全等;
B、腰相等的两个等腰三角形,缺少两腰的夹角或底边对应相等,所以两个三角形不一定全等;
C、边长相等的两个等边三角形,各个边长相等,符合全等三角形的判定定理SSS,所以两个三角形一定全等,故本选项正确;
D、一个钝角对应相等的两个等腰三角形的腰长或底边不一定对应相等,所以两个三角形不一定全等,故本选项错误.
故选:C.
本题主要考查全等图形的识别,解题的关键是熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意在:上取一点,求出点P到直线:的距离d即可.
【详解】
在:上取一点,
点P到直线:的距离d即为两直线之间的距离:
,
故答案为.
本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.
10、-2
【解析】
将(1,-2)代入得,—2=1×k,解得k=-2
11、2a(a-2)
【解析】
12、②③④
【解析】
分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可.
详解:∵﹣6,﹣3,x,2,﹣1,3的中位数是-1,∴分三种情况讨论:
①若x≤-3,则中位数是(-1-3)÷2=-2,矛盾;
②若x≥2,则中位数是(-1+2)÷2=0.5,矛盾;
③若-3<x≤-1或-1≤x<2,则中位数是(-1+x)÷2=-1,解得:x=﹣1;
平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1.
∵数据﹣1出现两次,出现的次数最多,∴众数为﹣1;
方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9,∴正确的序号是②③;
故答案为②③.
点睛:本题考查了方差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题的关键.
13、.
【解析】
首先设A(0,y),B(x,0)进而计算AC的长度,可列方程求解y的值,同理计算BC的长度列出方程即可计算x的值,进而确定直线AB的解析式.
【详解】
解:设A(0,y),B(x,0)
则AC2= ,根据题意OA=AC=y
所以可得 解得y=2
再根据BC2= ,根据题意OB=BC=x
所以可得 解得x=2
所以可得A(0,2 )B(2,0)
采用待定系数法可得 即
所以一次函数的解析式为
故答案为
本题主要考查一次函数的解析式求解,关键在于利用直角三角形,求解A、B点的坐标.
三、解答题(本大题共5个小题,共48分)
14、1
【解析】
先计算0指数幂、负指数幂和绝对值,再根据有理数加减混合运算法则计算即可得到结果.
【详解】
解:原式=
=1+-
=1.
此题考查了实数加减混合运算,熟练掌握运算法则是解本题的关键.
15、(1)见解析;(2)7.
【解析】
(1)分别将点三个点向上平移2个单位,再向右平移2个单位,然后顺次连接,并写出各点坐标;
(2)用三角形所在的矩形的面积减去几个小三角形的面积即可求解.
【详解】
解:如图所示:
坐标为,,;
.
本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点三个点平移过后的点.
16、(1);(2),PA的长为2或1.
【解析】
(1)由折叠的性质可得E ,F,D三点在同一直线上,在Rt△DEC中,根据勾股定理可求出BE,CE,DE的长,再根据面积法即可求出CK的值;
(2)分两种情况进行讨论:根据A′B′=4列出方程求解即可.
【详解】
⑴如图,
∵四边形ABCD为矩形,将 △ADP 与 △BPE分别沿DP与PE折叠,
∴∠PFD=∠PFE=90°,
∴∠PFD+∠PFE=180°,即:E ,F,D三点在同一直线上.
设BE=EF=x,则EC=1-x,
∵DC=AB=8, DF=AD=1,
在Rt△DEC中,∵DE=DF+FE=1+x, EC=1-x, DC=8,
∴(1+x)2=(1-x)2+82,
计算得出x=,即BE=EF=,
∴DE=, EC=,
∵S△DCE=DC∙CE=DECK,
∴CK=;
⑵①如图2中,设AP=x,则PB=8-x,
由折叠可知:PA′=PA=x , PB′=PB=8-x,
∵A′B′=4,
∴8-x-x=4,
∴x=2, 即AP=2.
②如图3中,
∵A′B′=4,
∴x-(8-x)=4, ∴x=1, 即AP=1.
综上所述,PA的长为2或1.
此题是四边形综合题,主要考查了矩形的性质,折叠问题,勾股定理.熟练运用勾股定理列方程求解是解本题的关键.
17、(1),;(2),
【解析】
(1)先移项,然后用因式分解法求解即可;
(2)直接用求根公式法求解即可.
【详解】
(1)
或
,
(2),,
,
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
18、(1)一件A种文具的价格为15元;(2)①W=-5a+3000;②有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.
【解析】
(1)根据题意可以得到相应的分式方程,从而可以求得一件A种文具的价格;
(2)①根据题意,可以直接写出W与a之间的函数关系式;
②根据题意可以求得a的取值范围,再根据W与a的函数关系式,可以得到W的最小值,本题得以解决.
【详解】
(1)设一件A种文具的价格为x元,则一件B种玩具的价格为(x+5)元,
解得,x=15,
经检验,x=15是原分式方程的解,
答:一件A种文具的价格为15元;
(2)①由题意可得,
W=15a+(15+5)(150-a)=-5a+3000,
即购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式是W=-5a+3000;
②∵购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,
∴,
解得,50≤a≤100,
∵a为整数,
∴共有51种购买方案,
∵W=-5a+3000,
∴当a=100时,W取得最小值,此时W=2500,150-a=100,
答:有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.
本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质、不等式的性质和分式方程的知识解答,注意分式方程要检验.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
解:∵∴
∴或.∵,∴
∴
故答案为:1.
20、y=-x
【解析】
直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.
【详解】
把点(-2,2)代入y=kx得
2=-2k,
k=-1,
所以正比例函数解析式为y=-x.
故答案为:y=-x.
本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
21、1
【解析】
因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为1.
【详解】
解:∵菱形的两条对角线长分别是6和8,
∴这个菱形的面积为6×8÷2=1
故答案为1
此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.
22、x≥-2且x≠1
【解析】
根据二次根式被开方数大于等于1,分式分母不等于1列式计算即可得解.
【详解】
解:由题意得,x+2≥1且2x≠1,
解得:x≥-2且x≠1.
故答案为:x≥-2且x≠1.
本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为1;(3)当函数表达式是二次根式时,被开方数非负.
23、3
【解析】
根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系,求得最小值.
【详解】
设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,
则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+1.
∵4>0 ∴当t=3s时,S取得最小值.
考点:二次函数的应用.
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
(1)先化简二次根式,再合并同类二次根式即可得;
(2)根据二次根式的乘法法则计算,再化简二次根式即可得.
【详解】
解:(1)原式;
(2)原式.
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.
25、(1)这个边形的每个内角为,这个边形的内角和为3960度;(2)小亮走出这个边形的周长为120米.
【解析】
(1)这个n边形每个内角度数为180°﹣15°=165°;根据多边形外角和360°,用360除以15求出边数,再利用内角和公式即可求解;
(2)周长为边数乘以边长.
【详解】
解:
(1)这个边形的每个内角为.
∵多边形的外角和为,
∴,解得:,
∴这个边形的内角和为3960度.
(2)(米),所以小亮走出这个边形的周长为120米.
本题主要考查了多边形的内角与外角,解题的关键是通过多边形外角和求解边数,再利用多边形内角和公式求解度数.
26、(1)c≤;(1)当c=1时,x1=1,x1=1;当c=1时,x1=,x1=
【解析】
(1)先根据方程有两个实数根可知△≥0,由△≥0可得到关于c的不等式,求出c的取值范围即可;
(1)由(1)中c的取值范围得出符合条件的c的正整数值,代入原方程,利用因式分解法或求根公式即可求出x的值.
【详解】
(1)解:∵方程有两个实根,∴△=b1-4ac=9-4c≥0,∴c≤;
(1)解:∵c≤,且c为正整数,∴c=1或c=1.
取c=1,方程为x1-3x+1=0,∴(x-1)(x-1)=0
解得:x1=1,x1=1.
也可如下:
取c=1,方程为x1-3x+1=0,解得:x1= ,x1=.
本题考查了根的判别式以及解一元二次方程.根据方程的特征熟练选择合适的解法是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
江苏省无锡惠山区七校联考2025届九上数学开学检测模拟试题【含答案】: 这是一份江苏省无锡惠山区七校联考2025届九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省兴化市顾庄区三校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2025届江苏省兴化市顾庄区三校九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省无锡市锡山区九上数学开学学业质量监测试题【含答案】: 这是一份2025届江苏省无锡市锡山区九上数学开学学业质量监测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。