![江苏省无锡市江南中学2024-2025学年数学九年级第一学期开学考试模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16284961/0-1729726930556/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省无锡市江南中学2024-2025学年数学九年级第一学期开学考试模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16284961/0-1729726930612/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省无锡市江南中学2024-2025学年数学九年级第一学期开学考试模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16284961/0-1729726930623/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省无锡市江南中学2024-2025学年数学九年级第一学期开学考试模拟试题【含答案】
展开
这是一份江苏省无锡市江南中学2024-2025学年数学九年级第一学期开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列直线与一次函数的图像平行的直线是( )
A.;B.;C.;D..
2、(4分)已知:,计算:的结果是()
A.B.C.D.
3、(4分)下列各式运算结果为x8的是( )
A.x4•x4B.(x4)4C.x16÷x2D.x4+x4
4、(4分)计算:=( )(a>0,b>0)
A.B.C.2aD.2a
5、(4分)在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有( )
①AC=5 ②∠A+∠C=180° ③AC⊥BD ④AC=BD
A.①②④B.①②③C.②③④D.①③④
6、(4分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形
7、(4分)如图是甲、乙两个探测气球所在位置的海拔高度(单位:)关于上升时间(单位:)的函数图像.有下列结论:
①当时,两个探测气球位于同一高度
②当时,乙气球位置高;
③当时,甲气球位置高;
其中,正确结论的个数是( )
A.个B.个C.个D.个
8、(4分)对某小区20户家庭某月的节约用水情况进行分组统计,结果如下表:
由上表可知,这20户家庭该月节约用水量的平均数是( )
A.1.8tB.2.3tC.2.5tD.3 t
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形ABCD是平行四边形,添加一个条件:________,可使它成为矩形.
10、(4分)如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.
11、(4分)如果一次函数y=kx+2的函数值y随着x的值增大而减小,那么k的取值范围是_____.
12、(4分)如果a-b=2,ab=3,那么a2b-ab2=_________;
13、(4分)如图,正方形中,点在边上,,把线段绕点旋转,使点落在直线上的点,则两点间的距离为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)为提高市民的精神生活美化城市环境,城市管理局从外地新进一批绿化树苗,现有两种运输方式可供选择,
方式一:使用快递公司的邮车运输,装卸收费500元,另外每公里再加收5元;
方式二:使用铁路运输公司的火车运输,装卸收费900元,另外每公里再加收3元.
(1)请分别写出邮车、火车运输的总费用为(元)、(元)与运输路程(公里)之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
15、(8分)如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.
(1)求点的坐标;
(2)求一次函数和反比例函数的表达式.
16、(8分)计算:
(1); (2).
17、(10分)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE
(1)证明DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
18、(10分)已知在中,是的中点,,垂足为,交于点,且.
(1)求的度数;
(2)若,,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果代数式有意义,那么字母x的取值范围是_____.
20、(4分)如图,在平面直角坐标系中,ΔABC绕点D旋转得到ΔA’B’C’,则点D的坐标为____.
21、(4分)如图甲,在所给方格纸中,每个小正方形的边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在格点处)请将图乙中的▱ABCD分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.
22、(4分)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为 .
23、(4分)如图,在4×4方格纸中,小正方形的边长为1,点A,B,C在格点上,若△ABC的面积为2,则满足条件的点C的个数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分) 某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?
25、(10分)如图,在平面直角坐标系中,两点分别是轴和轴正半轴上两个动点,以三点为顶点的矩形的面积为24,反比例函数(为常数且)的图象与矩形的两边分别交于点.
(1)若且点的横坐标为3.
①点的坐标为,点的坐标为(不需写过程,直接写出结果);
②在轴上是否存在点,使的周长最小?若存在,请求出的周长最小值;若不存在,请说明理由.
(2)连接,在点的运动过程中,的面积会发生变化吗?若变化,请说明理由,若不变,请用含的代数式表示出的面积.
26、(12分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.
(1)请填写下表;
(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(N>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
【分析】设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.据此可以判断.
【详解】A.直线 与直线相交,故不能选;
B.直线 与直线平行,故能选;
C.直线 与直线重合,故不能选;
D.直线 与直线相交,故不能选.
故选:B
【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数性质.
2、C
【解析】
原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.
【详解】
∵,,
∴
,
故选:C.
本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
3、A
【解析】
解:选项A,原式=;选项B,原式=x16;选项C,原式=;选项D, 原式=
故选A
4、C
【解析】
根据二次根式的除法法则计算可得.
【详解】
解:原式,
故选C.
本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.
5、A
【解析】
当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.
【详解】
根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,
∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,
∴∠BAD+∠BCD=180° ,AC==5,
①正确,②正确,④正确;③不正确;
故选A.
本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.
6、A
【解析】
已知AC和BD是对角线,取各自中点,则对角线互相平分(即AO=CO,BO=DO)的四边形是平行四边形.
【详解】
解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依据是对角线互相平分的四边形是平行四边形.
故选:A.
本题主要考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.
7、D
【解析】
根据图象进行解答即可.
【详解】
解:①当x=10时,两个探测气球位于同一高度,正确;
②当x>10时,乙气球位置高,正确;
③当0≤x<10时,甲气球位置高,正确;
故选:D.
本题考查了一次函数的应用、解题的关键是根据图象进行解答.
8、B
【解析】
根据每组的组中值利用加权平均数的定义列式计算即可得.
【详解】
解:由上表可知,这20户家庭该月节约用水量的平均数是
=2.3(t),
故选B.
本题考查了加权平均数,掌握加权平均数的计算公式是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、∠ABC=90°(或AC=BD等)
【解析】
本题是一道开放题,只要掌握矩形的判定方法即可.由有一个角是直角的平行四边形是矩形.想到添加∠ABC=90°;由对角线相等的平行四边形是矩形.想到添加AC=BD.
10、2
【解析】
由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB= x,则AF=x ,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.
【详解】
由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.
设AB= x,则AF=x ,AC=x+1.
∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.
∵ABCD是矩形,∴CD=AB=2.
故答案为:2.
本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
11、k<1.
【解析】
根据一次函数的性质解答即可.
【详解】
∵一次函数y=kx+2,函数值y随x的值增大而减小,
∴k<1.
故答案为:k<1.
本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠1),当k>1时,y随x的增大而增大;当k
相关试卷
这是一份江苏省无锡市江阴实验中学2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省无锡市第一女子中学2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省无锡市宜兴和桥二中学数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)