开学活动
搜索
    上传资料 赚现金

    江苏省无锡新吴区六校联考2025届九上数学开学教学质量检测模拟试题【含答案】

    江苏省无锡新吴区六校联考2025届九上数学开学教学质量检测模拟试题【含答案】第1页
    江苏省无锡新吴区六校联考2025届九上数学开学教学质量检测模拟试题【含答案】第2页
    江苏省无锡新吴区六校联考2025届九上数学开学教学质量检测模拟试题【含答案】第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡新吴区六校联考2025届九上数学开学教学质量检测模拟试题【含答案】

    展开

    这是一份江苏省无锡新吴区六校联考2025届九上数学开学教学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)△ABC与△DEF的相似比为,则△ABC与△DEF的面积比为( )
    A.B.C.D.
    2、(4分)一个等腰三角形的周长为14,其一边长为4那么它的底边长为( )
    A.5B.4C.6D.4或6
    3、(4分)若与互为相反数,则
    A.B.C.D.
    4、(4分)如图,平面直角坐标系中,已知点B,若将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是( )
    A.(3,1)B.(3,2)
    C.(1,3)D.(2,3)
    5、(4分)不等式的解集在数轴上表示为( )
    A.B.C.D.
    6、(4分)如图,若要用“”证明,则还需补充的条件是( )
    A.B.或
    C.且D.
    7、(4分)已知一个多边形的每个外角都要是60°,则这个多边形是( )
    A.七边形B.六边形C.五边形D.四边形
    8、(4分)如果方程组的解x、y的值相等 则m的值是( )
    A.1B.-1C.2D.-2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)己知某汽车油箱中的剩余油量y(升)与该汽车行驶里程数x(千米)是一次函数关系,当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,该汽车已行驶了____千米
    10、(4分)若关于的一元二次方程有两个不相等的实数根,则的取值范围是________.
    11、(4分)如图,直线l1:y=x+1与直线l2:y=kx+b相交于点P(m,3),则关于x的不等式x+1≤kx+b的解集为__________.
    12、(4分)平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B的坐标是(________).
    13、(4分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为分,分,,.那么成绩较为整齐的是______班.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),在正方形网格中,每个小正方形的边长是1个单位长度.
    (1)画出△ABC向上平移4个单位得到的△A1B1C1;
    (2)以点C为位似中心,在网格中画出△A2B2C,使△A2B2C与△ABC位似,且△A2B2C与△ABC的位似比为2:1,并直接写出点B2的坐标.
    15、(8分)已知:如图,在等边三角形中,点,分别在边和上,且.以为边作等边三角形,连接,,.
    (1)你能在图中找到一对全等三角形吗?请说明理由;
    (2)图中哪个三角形可以通过旋转得到另一个三角形?请说明是怎样旋转的.
    16、(8分)解不等式组:,并把解集在数轴上表示出来。
    17、(10分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像线段AB表示甲出发不足2小时因故停车检修),请根据图像所提供的信息,解决如下问题:
    (1)求乙车所行路程y与时间x的函数关系式;
    (2)求两车在途中第二次相遇时,它们距出发地的路程;
    (3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
    18、(10分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
    (1)画出把△ABC向下平移4个单位后的图形.
    (2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.
    (3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,和的角平分线相交于点,若,则的度数为______.
    20、(4分)已知空气的密度是0.001239,用科学记数法表示为________
    21、(4分)如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.
    22、(4分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.
    23、(4分)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB
    (1)求证:∠ABE=∠EAD;
    (2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
    25、(10分)已知△ABC的三边长a、b、c满足|a-4|+(2b- 12)2+ =0,试判断△ABC的形状,并说明理由.
    26、(12分)已知:如图,▱ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F.
    (1)求证:OE=OF;
    (2)连接BE,DF,求证:BE=DF.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    直接根据相似三角形的性质即可得出结论.
    【详解】
    解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,
    ∴△ABC与△DEF的面积比=()2=1:16,
    故答案为:D
    本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.
    2、D
    【解析】
    分为两种情况:①4是等腰三角形的底边;②4是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析.
    【详解】
    解:①当4是等腰三角形的底边时,则其腰长为=5,能构成三角形,
    ②当4是等腰三角形的腰时,则其底边为14-4×2=6,能构成三角形,
    综上,该三角形的底边长为4或6.
    故选:D.
    本题考查了等腰三角形的性质及三角形三边关系,注意分类讨论思想在解题中的应用.
    3、A
    【解析】
    根据根式的性质和绝对值的性质,要使与互为相反数,则可得和,因此可计算的的值.
    【详解】
    根据根式的性质和绝对值的性质可得:

    因此解得
    所以可得
    故选A.
    本题主要考查根式和绝对值的性质,关键在于根式要大于等于零,绝对值要大于等于零.
    4、D
    【解析】
    根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.
    【详解】
    解:△A1B1O如图所示,点B1的坐标是(2,3).
    故选D.
    本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.
    5、A
    【解析】
    先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.
    【详解】
    解不等式得:x⩽3,
    所以在数轴上表示为
    故选A.
    本题考查在数轴上表示不等式的解集,解题的关键是掌握在数轴上表示不等式的解集.
    6、B
    【解析】
    根据题意可知只要再有一条直角边对应相等即可通过“HL”证明三角形全等.
    【详解】
    解:已知△ABC与△ABD均为直角三角形,AB=AB,
    若或,
    则(HL).
    故选B.
    本题主要考查全等三角形的特殊判定,解此题的关键在于熟练掌握其知识点.
    7、B
    【解析】
    根据多边形的边数等于310°除以每一个外角的度数列式计算即可
    【详解】
    310°÷10°=1.故这个多边形是六边形.故选:B.
    此题考查多边形内角与外角,难度不大
    8、B
    【解析】
    由题意x、y值相等,可计算出x=y=2,然后代入含有m的代数式中计算m即可
    【详解】
    x、y相等 即x=y=2,x-(m-1)y =6 即2−(m-1)×2=6 解得m=-1
    故本题答案应为:B
    二元一次方程组的解法是本题的考点,根据题意求出x、y的值是解题的关键
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、500
    【解析】
    根据当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,根据题意列出式子进行计算即可.
    【详解】
    (250-200)÷(126-120)×(120-90)+250=500,
    故答案为:500.
    此题考查有理数的混合运算,解题关键在于根据题意列出式子.
    10、
    【解析】
    由方程有两个不相等的实数根,可得△>0,建立关于a的不等式,解不等式求出a的取值范围即可.
    【详解】
    ∵关于的一元二次方程有两个不相等的实数根,
    ∴△=16+4a>0,
    解得,.
    故答案为:a>-4.
    本题考查了一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    11、x≤1
    【解析】
    首先把P(m,3)代入y=x+1可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.
    【详解】
    解:把P(m,3)代入y=x+1得:m=1,
    则P(1,3),
    根据图象可得不等式x+1≤kx+b的解集是x≤1.
    故答案为:x≤1.
    本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
    12、1 -1
    【解析】
    让横坐标不变,纵坐标加1可得到所求点的坐标.
    【详解】
    ∵﹣2+1=﹣1,
    ∴点B的坐标是(1,﹣1),
    故答案为1,﹣1.
    本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.
    13、乙
    【解析】
    根据平均数与方差的实际意义即可解答.
    【详解】
    解:已知两班平均分相同,
    且>,
    故应该选择方差较小的,
    即乙班.
    本题考查方差的实际运用,在平均数相同时方差较小的结果稳定.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)图详见解析,点B2的坐标为(4,0).
    【解析】
    (1)将△ABC向上平移4个单位得到的△A1B1C1即可;
    (2)画出△A2B2C,并求出B2的坐标即可.
    【详解】
    解:(1)如图所示,△A1B1C1为所求的三角形;
    (2)如图所示,△A2B2C为所求三角形,点B2的坐标为(4,0).
    本题考查了作图-位似变换,平移变换,熟练掌握位似、平移的性质是解本题的关键.
    15、(1),见详解;(2)绕点顺时针旋转得到,见详解
    【解析】
    (1)根据三角形全等的判定即可得到答案;
    (2)在全等的三角形中根据旋转的定义即可得到答案.
    【详解】
    解:.
    证明:,为等边三角形

    在和中
    (2)绕点顺时针旋转得到.
    本题考查旋转的性质,等边三角形的性质,三角形全等的判定,认真观察图形找到全等的三角形是解决问题的关键.
    16、,解集在数轴上表示见解析
    【解析】
    试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.
    试题解析:
    由①得:
    由②得:
    ∴不等式组的解集为:
    解集在数轴上表示为:
    17、(1)y=1x﹣120;(2)两车在途中第二次相遇时它们距出发地的路程为240千米;
    (3)乙车出发1小时,两车在途中第一次相遇.
    【解析】
    分析:(1)由图可看出,乙车所行路程y与时间x的成一次函数,使用待定系数法可求得一次函数关系式;
    (2)由图可得:交点F表示第二次相遇,F点横坐标为6,代入(1)中的函数即可求得距出发地的路程;
    (3)交点P表示第一次相遇,即甲车故障停车检修时相遇,点P的横坐标表示时间,纵坐标表示离出发地的距离,要求时间,则需要把点P的纵坐标先求出;从图中看出,点P的纵坐标与点B的纵坐标相等,而点B在线段BC上,BC对应的函数关系可通过待定系数法求解,点B的横坐标已知,则纵坐标可求.
    详解:(1)设乙车所行使路程y与时间x的函数关系式为y=k1x+b1,把(2,0)和(10,480)代入,得:,
    解得:,
    故y与x的函数关系式为y=1x﹣120;
    (2)由图可得:交点F表示第二次相遇,F点的横坐标为6,此时y=1×6=120=240,则F点坐标为(6,240),故两车在途中第二次相遇时它们距出发地的路程为240千米;
    (3)设线段BC对应的函数关系式为y=k2x+b2,把(6,240)、(8,480)代入,得:

    解得:,
    故y与x的函数关系式为y=120x﹣480,则当x=4.5时,y=120×4.5﹣480=1.
    可得:点B的纵坐标为1.
    ∵AB表示因故停车检修,∴交点P的纵坐标为1,把y=1代入y=1x﹣120中,有1=1x﹣120,解得x=3,则交点P的坐标为(3,1).
    ∵交点P表示第一次相遇,∴乙车出发3﹣2=1小时,两车在途中第一次相遇.
    点睛:本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从坐标系中提取信息的能力,是道综合性较强的代数应用题,对学生能力要求比较高.
    18、 (1)见解析;(2)见解析;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).
    【解析】
    (1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)首先确定A、B、C三点绕坐标原点O逆时针旋转90°后的对应点位置,再连接即可;
    (3)结合图形可得D点位置有三处,分别以AB、AC、BC为对角线确定位置即可.
    【详解】
    (1)如图所示,△即为所求作;
    (2)如图所示,△DEF即为所求作;
    (3)D1(3,3)、D2(-7,3)、D3(-5,-3).
    此题主要考查了作图--旋转变换,关键是正确确定A、B、C三点旋转后的位置.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、70°
    【解析】
    根据三角形的内角和等于180°,求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和等于180°,列式计算即可得解.
    【详解】
    解:∵,
    ∴∠OBC+∠OCB=180°-125°=55°,
    ∵BO平分∠ABC,CO平分∠ACB,
    ∴∠ABC=2∠OBC,∠ACB=2∠OCB,
    ∴∠ABC+∠ACB=2(∠OBC+∠OCB)=110°,
    ∴∠A=180°-110°=70°;
    故答案为:70°.
    此题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.
    20、1.239×10-3.
    【解析】
    绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    0.001239=1.239×10-3
    故答案为:1.239×10-3.
    本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.
    21、AB的中点.
    【解析】
    若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.
    【详解】
    当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:
    ∵∠BAC=90°,AB=AC,D为BC中点,
    ∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,
    ∴△ABD是等腰直角三角形,
    当P为AB的中点时,DP⊥AB,即∠APD=90°,
    又∵∠A=90°,∠PDQ=90°,
    ∴四边形APDQ为矩形,
    又∵DP=AP=AB,
    ∴矩形APDQ为正方形,
    故答案为AB的中点.
    此题考查正方形的判定,等腰直角三角形,解题关键在于证明△ABD是等腰直角三角形
    22、87.1.
    【解析】
    根据加权平均数的含义和求法,可求出甲的平均成绩.
    【详解】
    面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,
    甲的平均成绩为:(分).
    故答案为:87.1.
    考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.
    23、88
    【解析】
    试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可:
    ∵笔试按60%、面试按40%计算,
    ∴总成绩是:90×60%+85×40%=88(分).
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.
    (2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.
    【详解】
    证明:(1)∵在平行四边形ABCD中,AD∥BC,
    ∴∠AEB=∠EAD.
    ∵AE=AB,
    ∴∠ABE=∠AEB.
    ∴∠ABE=∠EAD.
    (2)∵AD∥BC,
    ∴∠ADB=∠DBE.
    ∵∠ABE=∠AEB,∠AEB=2∠ADB,
    ∴∠ABE=2∠ADB.
    ∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.
    ∴AB=AD.
    又∵四边形ABCD是平行四边形,
    ∴四边形ABCD是菱形.
    25、△ABC为直角三角形,理由见解析.
    【解析】
    根据绝对值、平方、二次根式的非负性即可列出式子求出a,b,c的值,再根据勾股定理即可判断.
    【详解】
    △ABC为直角三角形,理由,
    由题意得a-4=0.2b-12=0,10-c=0 ,
    所以a=8、b=6,c=10.
    所以a2 +b2=c2 , △ABC为直角三角形.
    此题主要考查勾股定理的应用,解题的关键是根据非负性求出各边的长.
    26、(1)见解析;(2)见解析.
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,又由OE⊥AD,OF⊥BC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF;
    由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OB=OD,
    又由OE=OF,可证得四边形DEBF是平行四边形,由平行四边形的性质可得BE=DF.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,AD∥BC,
    ∴∠OAF=∠OCE,
    在△OAF和△OCE中,

    ∴△AOF≌△COE(ASA),
    ∴OE=OF;
    (2)证明:∵四边形ABCD是平行四边形,
    ∴OB=OD,∵OE=OF,
    ∴四边形DEBF是平行四边形,
    ∴BE=DF.
    本题考查的知识点是平行四边形的性质,解题关键是熟记平行四边形性质.
    题号





    总分
    得分

    相关试卷

    江苏省无锡惠山区七校联考2025届九上数学开学检测模拟试题【含答案】:

    这是一份江苏省无锡惠山区七校联考2025届九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省苏州区六校联考数学九上开学复习检测模拟试题【含答案】:

    这是一份2024年江苏省苏州区六校联考数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省无锡新吴区九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份2024-2025学年江苏省无锡新吴区九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map