江苏省盐城市东台市2025届数学九上开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式组的解集为( )
A.x>B.x>1C.<x<1D.空集
2、(4分)如图,将一个含30°角的直角三角板ABC绕点A旋转,使得点B、A、C′在同一条直线上,则旋转角∠BAB′的度数是( ).
A.90°B.120°C.150°D.160°
3、(4分)样本数据3、6、a、4、2的平均数是5,则这个样本的方差是( )
A.8B.5C.D.3
4、(4分)下列命题是真命题的是( )
A.平行四边形的对角线互相平分且相等
B.任意多边形的外角和均为360°
C.邻边相等的四边形是菱形
D.两个相似比为1:2的三角形对应边上的高之比为1:4
5、(4分)将一个n边形变成(n+1)边形,内角和将( )
A.减少180°B.增加90°
C.增加180°D.增加360°
6、(4分)若式子在实数范围内有意义,则x的取值范围是( )
A.x≥B.x>C.x≥D.x>
7、(4分)某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是( )
A.平均数B.中位数C.众数D.方差
8、(4分)下列各选项中因式分解正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)李老师到超市买了xkg香蕉,花费m元钱;ykg苹果,花费n元钱.若李老师要买3kg香蕉和2kg苹果共需花费_____元.
10、(4分)如图,在平面直角坐标系中,直线l为正比例函数的图象,点的坐标为,过点作x轴的垂线交直线l于点,以为边作正方形;过点作直线l的垂线,垂足为,交x轴于点,以为边作正方形;过点作x轴的垂线,垂足为,交直线l于点,以为边作正方形;……按此规律操作下去,得到的正方形的面积是______________.
11、(4分)两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.
12、(4分)如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.
13、(4分)计算的结果为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了节约能源,某城市开展了节约水电活动,已知该城市共有10000户家庭,活动前,某调查小组随机抽取了部分家庭每月的水电费的开支(单位:元),结果如左图所示频数直方图(每一组含前一个边界值,不含后一个边界值);活动后,再次调查这些家庭每月的水电费的开支,结果如表所示:
(1)求所抽取的样本的容量;
(2)如以每月水电费开支在225元以下(不含)为达到节约标准,请问通过本次活动,该城市大约增加了多少户家庭达到节约标准?
(3)活动后,这些样本家庭每月水电费开支的总额能否低于6000元?
(4)请选择一个适当的统计量分析活动前后的相关数据,并评价节约水电活动的效果.
15、(8分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.
(1)写出y与t之间的函数关系式;
(2)通话2分钟应付通话费多少元?通话7分钟呢?
16、(8分)如图,已知菱形ABCD的对角线AC,BD相交于点O,过C作CE⊥AC,交AB的延长线于点E.
(1)求证:四边形BECD是平行四边形;
(2)若∠E=50°,求∠DAB的度数.
17、(10分)如图,P、Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(顶点都在格点上的四边形称为格点四边形)
(1)在图①中画出一个面积最小的中心对称图形PAQB,
(2)在图②中画出一个四边形PCQD,使其是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.
18、(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________.
20、(4分)关于t的分式方程=1的解为负数,则m的取值范围是______.
21、(4分)如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是____m.
22、(4分)已知α、β是一元二次方程x2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=_____.
23、(4分)一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并判断是否为该不等式组的解.
25、(10分)某商城经销一款新产品,该产品的进价6元/件,售价为9元/件.工作人员对30天销售情况进行跟踪记录并绘制成图象,图中的折线OAB表示日销售量(件)与销售时间(天)之间的函数关系.
(1)第18天的日销售量是 件
(2)求与之间的函数关系式,并写出的取值范围
(3)日销售利润不低于900元的天数共有多少天?
26、(12分)计算:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.
【详解】
解不等式2x>1-x,得:x>,
解不等式x+2<4x-1,得:x>1,
则不等式组的解集为x>1,
故选B.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2、C
【解析】
根据旋转角的定义,对应点与旋转中心所连线段的夹角等于旋转角,即可求解.
【详解】
旋转角是∠BAB′=180°-30°=150°.
故选C.
本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.
3、A
【解析】
本题可先求出a的值,再代入方差的公式即可.
【详解】
∵3、6、a、4、2的平均数是5,
∴a=10,
∴方差.
故选A.
本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.
4、B
【解析】
利用平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质判断后即可确定正确的选项.
【详解】
解:A、平行四边形的对角线互相平分但不一定相等,故错误,是假命题;
B、任意多边形的外角和均为360°,正确,是真命题;
C、邻边相等的平行四边形是菱形,故错误,是假命题;
D、两个相似比为1:2的三角形对应边上的高之比为1:2,故错误,是假命题,
故选:B.
本题考查了命题的判断,涉及平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质等知识点,掌握基本知识点是解题的关键.
5、C
【解析】
利用多边形的内角和公式即可求出答案.
【详解】
解:n边形的内角和是(n﹣2)•180°,
n+1边形的内角和是(n﹣1)•180°,
因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.
故选C.
6、A
【解析】
根据:二次根式的被开方数必须大于或等于0,才有意义.
【详解】
若式子在实数范围内有意义,则2x-3≥0,即x≥.
故选A
本题考核知识点:二次根式有意义问题.解题关键点:熟记二次根式有意义条件.
7、B
【解析】
由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.
【详解】
解:因为3位获奖者的分数肯定是7名参赛选手中最高的,
而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,
故只要知道自己的分数和中位数就可以知道是否获奖了.
故选:.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
8、D
【解析】
直接利用公式法以及提取公因式法分解因式进而判断即可.
【详解】
解:A.,故此选项错误;
B.,故此选项错误;
C.,故此选项错误;
D.,正确.
故选D.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意可以列出相应的代数式,本题得以解决.
【详解】
由题意可得:李老师要买3kg香蕉和2kg苹果共需花费:()(元).
故答案为.
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
10、
【解析】
根据正比例函数的性质得到,,均为等腰直角三角形,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.
【详解】
∵点的坐标为,
∴点的坐标为,
∴正方形的边长为1,面积为1.
∵直线l为正比例函数的图象,
∴,,均为等腰直角三角形,
∴,
,
正方形的边长为,面积为.
同理,正方形的边长为,面积为
……
所以正方形的面积是.
本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到,,均为等腰直角三角形,正确找出规律是解题的关键.
11、2
【解析】
两个面积相等的正方形无论它们各自位置如何,当其中一个正方形的顶点与另一个正方形对角线的交点重合时,此时的重合部分面积总是等于其中一个正方形面积的四分之一,据此求解即可.
【详解】
∵无论正方形位置关系如何,其重合部分面积不变,仍然等于其中一个正方形面积的四分之一,
∴重合部分面积=.
故答案为:2.
本题主要考查了正方形性质,熟练掌握相关概念是解题关键.
12、1
【解析】
如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.,由题意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,设BC=CF=a,OF=BE=2b,首先证明AE=AB,再证明S△ABCS△OCF,由此即可解决问题.
【详解】
如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.
由题意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,设BC=CF=a,OF=BE=2b.
∵S△AOE=S△OCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴S△ABCS△OCF,S△OCB'=S△OFC=,∴S四边形OABC=S△OCB'+2S△ABC21.
故答案为:1.
本题考查了反比例函数比例系数k、翻折变换等知识,解题的关键是理解反比例函数的比例系数k的几何意义,学会利用参数解决问题,属于中考常考题型.
13、x﹣1
【解析】
同分母的分式相加,分母不变分子做加减法,然后再讲答案化简即可
【详解】
,故填x-1
本题考查分式的简单计算,熟练掌握运算法则是解题关键
三、解答题(本大题共5个小题,共48分)
14、(1)40;(2)1250户;(3)活动后,这些样本家庭每月水电费开支的总额不低于6000元.(4)开支在225以下的户数上可以看出节约水电活动的效果还不错.
【解析】
(1)将频数分布直方图各分组频数相加即可得样本容量;
(2)分别计算出活动前、后达到节约标准的家庭数,相减即可得;
(3)取各分组的组中值,再分别乘以各分组的频数,相加即可得;
(4)根据统计图中的数据可以解答本题,本题答案不唯一,只要合理即可..
【详解】
解:(1)所抽取的样本的容量为6+12+11+7+3+1=40;
(2)活动前达到节约标准的家庭数为10000×=7250(户),
活动后达到节约标准的家庭数为10000×=8500(户),
85007250=1250(户),
∴该城市大约增加了1250户家庭达到节约标准;
(3)这40户家庭每月水电费开支总额为:
7×100+13×150+14×200+4×250+2×300=7050(元),
∴活动后,这些样本家庭每月水电费开支的总额不低于6000元.
(4)根据题意可知,开支在225以下的户数上可以看出节约水电活动的效果还不错.
本题考查的是频数分布直方图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.频数分布直方图能清楚地表示出每个项目的数据.
15、(1)当0
【解析】
试题分析:(1)由图,当时,y为恒值;当时,图象过点(3,2.4)、(5,4.4),可根据待定系数法求函数关系式;
(2)因为,所以根据AB段对应的函数即可得到结果;因为7>3,所以根据BC段对应的函数关系式即可得结果.
(1)当时,;
当时,设函数关系式为,
∵图象过点(3,2.4)、(5,4.4),
,解得,
y与t之间的函数关系式为;
(2)当时,元,
当时,元.
考点:本题考查的是一次函数的应用
点评:此类题目的解决需仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.
16、 (1)证明见解析;(2)∠DAB=80°.
【解析】
直接利用菱形的性质对角线互相垂直,得出,进而得出答案;
利用菱形、平行四边形的性质得出,进而利用三角形内角和定理得出答案.
【详解】
(1)证明:∵四边形ABCD是菱形,
∴AC⊥BD,DC∥BE,
又∵CE⊥AC,
∴BD∥EC,
∴四边形BECD是平行四边形;
(2)解:∵四边形ABCD是菱形,
∴AD=AB,
∴∠ADB=∠ABD,
∵四边形BECD是平行四边形,
∴DB∥CE,
∴∠CEA=∠DBA=50°,
∴∠ADB=50°,
∴∠DAB=180°﹣50°﹣50°=80°.
此题主要考查了菱形的性质以及平行四边形的性质,正确应用菱形的性质是解题关键.
17、(1)画图见解析;(2)画图见解析.
【解析】
(1)利用方格纸的特点及几何图形的计算方法,利用割补法,把四边形PAQB的面积转化为△PAQ与△PBQ的面积之和,根据两个三角形的底PQ一定时,要使面积最小,则满足高最小,且同时满足顶点都在格点上即可得答案;(2)根据题意,画出的四边形是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到可知此四边形是等腰梯形,根据方格纸的特点,作出满足条件的图形即可.
【详解】
(1)∵PQ为对角线,
∴S四边形PAQB=S△PAQ+S△PBQ,
∵PQ一定时,高最小时,△PAQ与△PBQ的面积最小,A、B在格点上,
∴高为1,
∴四边形PAQB如图①所示:
(2)∵四边形PCQD是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到,
∴四边形PCQD是等腰梯形,
∴四边形PCQD如图②所示:
本题考查了作图——旋转变化及利用割补法计算几何图形的面积,熟练掌握旋转的性质及方格纸的特点是解题关键.
18、见解析;
【解析】
试题分析:(1)直接利用三角形中位线定理得出DEBC,进而得出DE=FC;
(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长
试题解析:(1)证明:∵D、E分别为AB、AC的中点, ∴DEBC,
∵延长BC至点F,使CF=BC, ∴DEFC, 即DE=CF;
(2)解:∵DEFC, ∴四边形DEFC是平行四边形, ∴DC=EF,
∵D为AB的中点,等边△ABC的边长是2, ∴AD=BD=1,CD⊥AB,BC=2, ∴DC=EF=.
考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质
一、填空题(本大题共5个小题,每小题4分,共20分)
19、26cm
【解析】
先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.
【详解】
∵△ABC沿BC方向平移3cm得到△DEF,
∴DF=AC,AD=CF=3cm,
∵△ABC的周长为20cm,即AB+BC+AC=20cm,
∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),
即四边形ABFD的周长为26cm.
故答案是:26cm.
考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
20、m<1
【解析】
分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m的范围即可.
【详解】
去分母得:m-5=t-2,
解得:t=m-1,
由分式方程的解为负数,得到m-1<0,且m-1≠2,
解得:m<1,
故答案为:m<1.
此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.
21、12
【解析】
∵直角三角形的斜边长为15m,一直角边长为9m,
∴另一直角边长=,
故梯子可到达建筑物的高度是12m.
故答案是:12m.
22、1
【解析】
根据根与系数的关系可得:α+β=2019,αβ=1,将其代入(α﹣2019)(β﹣2019)=αβ-2019(α+β)+ 中即可求出结论.
【详解】
∵α、β是一元二次方程x2﹣2019x+1=0的两实根,
∴α+β=2019,αβ=1,
∴(α﹣2019)(β﹣2019)=αβ-2019(α+β)+=1.
故答案为1.
本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.
23、y=2x+1
【解析】
解:已知一次函数y=kx+b与y=2x+1平行,可得k=2,
又因函数经过点(-3,4),代入得4=-6+b,解得,b=1,
所以函数的表达式为y=2x+1.
二、解答题(本大题共3个小题,共30分)
24、,是该不等式组的解
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
【详解】
解:
由不等式①得:
由不等式②得:
∴不等式组的解集为:
∵,
∴是该不等式组的解.
本题考查的是解一元一次不等式组,以及不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤和方法.
25、(1)360;(2)y=;(3)16天
【解析】
(1)根据图象即可得到结论;
(2)根据点的坐标,利用待定系数法可求出直线OA、AB的函数关系式,即可找出y与x之间的函数关系式;
(3)根据日销售量=日销售利润÷每件的利润,可求出日销售量,将其分别代入OA、AB的函数关系式中求出x值,将其相减加1即可求出日销售利润不低于900元的天数.
【详解】
解:(1)由图象知,第18天的日销售量是360件;
故答案为:360;
(2)当时,设直线OA的函数解析式为:y=kx,
把(18,360)代入得360=18k,
解得:k=20,
∴y=20x(0≤x≤18),
当18
解得:,
∴直线AB的函数解析式为:y=-5x+450,
综上所述,y与x之间的函数关系式为:y=;
(3)当 0≤x≤18 时,根据题意得,(9-6)×20x≥900,解得:x≥15;
当 18<x≤1 时,根据题意得,(9-6)×(-5x+450)≥900,解得:x≤1.
∴15≤x≤1;
∴1-15+1=16(天),
∴日销售利润不低于 900 元的天数共有 16天.
本题考查了一次函数的应用,解题的关键是:根据点的坐标,利用待定系数法求出函数关系式;利用一次函数图象上点的坐标特征求出日销售利润等于900元的销售时间.
26、5
【解析】
原式
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
江苏省盐城市亭湖区2024年数学九上开学学业水平测试模拟试题【含答案】: 这是一份江苏省盐城市亭湖区2024年数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省盐城市东台市七校2025届九上数学开学检测试题【含答案】: 这是一份江苏省盐城市东台市七校2025届九上数学开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省盐城市东台市第二联盟2024-2025学年九上数学开学达标测试试题【含答案】: 这是一份江苏省盐城市东台市第二联盟2024-2025学年九上数学开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。