江苏省盐城中学2024-2025学年九上数学开学学业水平测试模拟试题【含答案】
展开
这是一份江苏省盐城中学2024-2025学年九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于一次函数,下列结论正确的是( )
A.图象过点B.图象与轴的交点是
C.随的增大而增大D.函数图象不经过第三象限
2、(4分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A.B.C.D.
3、(4分)如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为( )
A.4B.9C.10D.4+
4、(4分)下列x的值中,是不等式x>3的解的是( )
A.B.0C.2D.4
5、(4分)甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是( )
A.甲队率先到达终点B.甲队比乙队多走了200米路程
C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快
6、(4分)在学校举办的独唱比赛中,10位评委给小丽的平分情况如表所示:
则下列说法正确的是( )
A.中位数是7.5B.中位数是8C.众数是8D.平均数是8
7、(4分)方程的解是( )
A.B.,C.,D.,
8、(4分)如图,四边形ABCD是菱形,AB=5,AC=6,AE⊥BC于E,则AE等于( )
A.4B.C.D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在中,,,点分别是边的中点,则的周长是__________.
10、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.
11、(4分)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的的长度为________.
12、(4分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
13、(4分)下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.
15、(8分)如图所示,□ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.
16、(8分)已知Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a,b,c,设△ABC的面积为S.
(1)填表:
(2)①如果m=(c+b-a)(c-b+a),观察上表猜想S与m之间的数量关系,并用等式表示出来.
②证明①中的结论.
17、(10分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.
(1)求证:∠A=∠AEB;
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.
18、(10分)如图,边长为的正方形中,对角线相交于点,点是中点,交于点,于点,交于点.
(1)求证:≌;
(2)求线段的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,把Rt△ABC(∠ABC=90°)沿着射线BC方向平移得到Rt△DEF,AB=8,BE=5,则四边形ACFD的面积是________.
20、(4分)已知一组数据,,的方差为4,那么数据,,的方差是___________.
21、(4分)李华在淘宝网上开了一家羽毛球拍专卖店,平均每大可销售个,每个盈利元,若每个降价元,则每天可多销售个.如果每天要盈利元,每个应降价______元(要求每个降价幅度不超过元)
22、(4分)顺次连结任意四边形各边中点所得到的四边形一定是 .
23、(4分)在一次射击比赛中,甲、乙两名运动员 10 次射击的平均成绩都是 7 环,其中甲的成绩的方差为 1.2,乙的成绩的方差为 3.9,由此可知_____的成绩更稳定.
二、解答题(本大题共3个小题,共30分)
24、(8分)在矩形中,,,是边上一点,以点为直角顶点,在的右侧作等腰直角.
(1)如图1,当点在边上时,求的长;
(2)如图2,若,求的长;
(3)如图3,若动点从点出发,沿边向右运动,运动到点停止,直接写出线段的中点的运动路径长.
25、(10分)如图,四边形ABCD中, BA=BC, DA=DC,我们把这种两组邻边分别相等的四边形叫做“筝形”, 其对角线AC、BD交于点M,请你猜想关于筝形的对角线的一条性质,并加以证明.
猜想:
证明:
26、(12分)如图,中,.
(1)用尺规作图法在上找一点,使得点到边、的距离相等(保留作图痕迹,不用写作法);
(2)在(1)的条件下,若,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
A、把点的坐标代入关系式,检验是否成立;
B、把y=0代入解析式求出x,判断即可;
C、根据一次项系数判断;
D、根据系数和图象之间的关系判断.
【详解】
解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;
B、把y=0代入y=−2x+3,得x=,所以图象与x轴的交点是(,0),故错误;
C、∵−2<0,∴y随x的增大而减小,故错误;
D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.
故选:D.
本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.
2、B
【解析】
解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
故选B.
3、D
【解析】
根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.
【详解】
作CE⊥AD于点E,如下图所示,
由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,
∴ =5,
解得,AD=5,
又∵BC∥AD,∠A=90°,CE⊥AD,
∴∠B=90°,∠CEA=90°,
∴四边形ABCE是矩形,
∴AE=BC=2,
∴DE=AD−AE=5−2=3,
∴CD==,
∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,
故选D.
此题考查动点问题的函数图象,解题关键在于利用勾股定理进行计算
4、D
【解析】
根据不等式的解集定义即可判断.
【详解】
∵不等式x>3的解集是所有大于3的数,
∴4是不等式的解.故选D.
此题主要考查不等式的解集,解题的关键是熟知不等式的解与解集的关系.
5、C
【解析】
A、由函数图象可知,甲走完全程需要4分钟,乙走完全程需要3.8分钟,乙队率先到达终点,错误;
B、由函数图象可知,甲、乙两队都走了1000米,路程相同,错误;
C、因为4﹣3.8=02分钟,所以,乙队比甲队少用0.2分钟,正确;
D、根据0~2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,错误;
故选C.
本题考查函数的图象,能正确识图,根据函数图象所给的信息,逐一判断是关键.
6、A
【解析】
分别利用众数、中位数及加权平均数的定义及公式求得答案后即可确定符合题意的选项.
【详解】
∵共10名评委,
∴中位数应该是第5和第6人的平均数,为7分和8分,
∴中位数为:7.5分,
故A正确,B错误;
∵成绩为6分和8分的并列最多,
∴众数为6分和8分,
故C错误;
∵平均成绩为:=8.5分,
故D错误,
故选:A.
本题考查了众数、中位数及加权平均数的知识,解题的关键是能够根据定义及公式正确的求解,难度不大.
7、C
【解析】
把方程两边的看作一个整体,进行移项、合并同类项的化简,即可通过因式分解法求得一元二次方程的解.
【详解】
方程 经移项、合并同类项后,化简可得:,即,则解为,故选C.
本题考查一元二次方程的化简求解,要掌握因式分解法.
8、C
【解析】
连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.
【详解】
解:连接BD,交AC于O点,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD=5,
∴AC⊥BD,AO=AC,BD=2BO,
∴∠AOB=90°,
∵AC=6,
∴AO=3,
∴BO=,
∴DB=8,
∴菱形ABCD的面积是×AC•DB=×6×8=24,
∴BC•AE=24,
AE=,
故选C.
此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
【详解】
解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB===5,
∵点D、E、F分别是边AB、AC、BC的中点,
∴DE=BC,DF=AC,EF=AB,
∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
故答案为:6.
本题考查了勾股定理和三角形中位线定理.
10、2
【解析】
先解出关于x的不等式,由数轴上表示的解集求出的范围即可.
【详解】
解:,
不等式组整理得:,
由数轴得:,可得,
解得:,
故答案为2
此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.
11、2.1
【解析】
分析:根据矩形的性质可得AC=BD=10,BO=DO=BD=1,再根据三角形中位线定理可得PQ=DO=2.1.
详解:∵四边形ABCD是矩形,
∴AC=BD=10,BO=DO=BD,
∴OD=BD=1,
∵点P、Q是AO,AD的中点,
∴PQ是△AOD的中位线,
∴PQ=DO=2.1.
故答案为2.1.
点睛:此题主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.
12、55.
【解析】
试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C
∴∠ACA’=35°,∠A =∠A’,.
∵∠A’DC=90°,
∴∠A’ =55°.
∴∠A=55°.
考点:1.旋转的性质;2.直角三角形两锐角的关系.
13、13.1.
【解析】
根据加权平均数的计算公式计算可得.
【详解】
解:该校篮球队队员的平均年龄为=13.1
故答案为13.1.
本题主要考查加权平均数的计算方法,解题的关键是掌握平均数的定义和计算公式.
三、解答题(本大题共5个小题,共48分)
14、;见解析;.
【解析】
首先求出每个不等式的解集,找到公共解集,然后在数轴上表示出来,根据数轴写出正整数解即可.
【详解】
解: ,
解不等式①,得
解不等式②,得
所以,原不等式组的解集是
在数轴上表示为:
不等式组的正整数解是
本题考查解一元一次不等式组、在数轴上表示不等式组的解集、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式组的方法.
15、见解析
【解析】
整体分析:
用一组对边平行且相等的四边形是平行四边形证明四边形DEBF是平行四边形,结合条件得到EM=FN即可求证.
证明:∵四边形ABCD是平行四边形,
∴AB//CD.
∵AE=CF,
∴FD=EB,
∴四边形DEBF是平行四边形,
∴DE//FB,DE=FB.
∵M、N分别是DE、BF的中点,
∴EM=FN.
∵DE//FB,
∴四边形MENF是平行四边形.
16、(1)6,30,60,4,6,10;(2)①S=m;②见解析
【解析】
(1)根据直角三角形的面积等于两条直角边的乘积除以2,可求得,把三边对应数值分别代入c-b+a,即得结果;
(2)①通过图表中数据分析,可得4S=m,即得S与m的关系式;
②利用平方差公式和完全平方公式,把m展开化简,利用勾股定理即可证明.
【详解】
(1)直角三角形面积S=,代入数据分别计算得:,,,由,分别代入计算得:5-4+3=4,13-12+5=6,17-15+8 =10;
(2)①结合图表可以看出:6×4÷4=6,20×6÷4=30,24×10÷4=60,即得m=4S,所以S=m;
②证明:∵m= (c+b-a)(c-b+a)
= [c+(b-a)][(c-(b-a)]= [c2-(b-a)2]= [c2-(a2+b2)+2ab]
在Rt△ABC中,c2=a2+b2,∴m=×2ab=ab,
又∵S=ab,
∴S=m.
本题考查了直角三角形的面积求法,平方差公式和完全平方公式的应用,勾股定理的应用,掌握直角三角形的三边关系以及平方差公式和完全平方公式是解题的关键.
17、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据圆内接四边形的性质可得,根据邻补角互补可得,进而得到,然后利用等边对等角可得,进而可得;
(2)首先证明是等边三角形,进而可得,再根据,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.
【详解】
解:(1)∵四边形ABCD是⊙O的内接四边形,
∴,
∵,
∴,
∵DC=DE,
∴,
∴;
(2)∵,
∴△ABE是等腰三角形,
∵EO⊥CD,
∴CF=DF,
∴EO是CD的垂直平分线,
∴ED=EC,
∵DC=DE,
∴DC=DE=EC,
∴△DCE是等边三角形,
∴,
∴△ABE是等边三角形.
本题考查圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.
18、(1)详见解析;(2)
【解析】
(1)首先根据题意可得,,在只需证明,即可证明≌.
(2)首先利用在中,结合勾股定理计算AE,再利用等面积法计算BG即可.
【详解】
(1)证明:∵四边形是正方形
∴,
∵
∴
又∵
∴
∴≌;
(2)
解:∵在中,,
∴
又∵
∴
本题主要考查正方形的性质,难度系数较低,应当熟练掌握.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、40
【解析】
根据平移的性质可得CF=BE=5,然后根据平行四边形的面积公式即可解答.
【详解】
由平移的性质可得:CF=BE=5,
∵AB⊥BF,
∴四边形ACFD的面积为:AB·CF=8×5=40,
故答案为40.
本题考查了平移的性质和平行四边形面积公式,掌握平移的性质和平行四边形面积公式是解题的关键.
20、4
【解析】
设数据,,的平均数为m,据此可得数据a+2,b+2,c+2的平均数为m+2,然后根据方差公式进行计算即可得.
【详解】
设数据,,的平均数为m,
则有a+b+c=3m,=4,
∴a+2,b+2,c+2的平均数为(a+2+b+2+c+2)÷3=(3m+6)÷3=m+2,
方差为:
==4,
故答案为:4.
本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.
21、1
【解析】
首先设每个羽毛球拍降价x元,那么就多卖出5x个,根据每天要盈利1700元,可列方程求解.
【详解】
解:设每个羽毛球拍降价x元,
由题意得:(40-x)(20+5x)=1700,
即x2-31x+180=0,
解之得:x=1或x=20,
因为 每个降价幅度不超过15元,
所以 x=1符合题意,
故答案是:1.
本题考查了一元二次方程的应用,关键是看到降价和销售量的关系,然后根据利润可列方程求解.
22、平行四边形
【解析】
试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.
考点:平行四边形的判定
23、甲
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.
故答案为甲;
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)线段的中点的运动路径长为.
【解析】
(1)如图1中,证明△ABE≌△ECF(AAS),即可解决问题.
(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.证明△EFM≌△DNC(AAS),设NC=FM=x,利用勾股定理构建方程即可解决问题.
(3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.由△ABE∽△AMF,推出∠AMF=∠ABE=90°,由AQ=FQ,AH=MH,推出,HQ∥FM,推出∠AHQ=90°,推出点Q的运动轨迹是线段HQ,求出MF的长即可解决问题.
【详解】
(1)如图1中,
四边形是矩形,
,
,,
,,
,
,
.
(2)如图2中,延长,交于点,过点作于点.
同理可证,
设,则,
,,
,
,
,
,,,
即在中,,
在中,,
在中,,
即,解得或(舍弃),即,
(3)如图3中,在上截取,连接,,取的中点,连接.
,
,
,
,
,,
,,
,,
,
点的运动轨迹是线段,
当点从点运动到点时,,
,
,
线段的中点的运动路径长为.
本题考查了全等三角形、勾股定理、相似三角形,掌握矩形的性质及全等三角形的性质和判定、利用勾股定理列方程、相似三角形的性质是解题的关键.
25、筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC;证明见解析
【解析】
利用SSS定理证明△ABD≌△CBD,可得∠ABD=∠CBD,∠ADB=∠CDB,从而可写出关于筝形的对角线的一条性质,筝形有一条对角线平分一组对角.
【详解】
解:筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC
证明:∵在△ABD和△CBD中
BA=BC,DA=DC,BD=BD
∴△ABD≌△CBD(SSS)
∴∠ABD=∠CBD,∠ADB=∠CDB
即BD平分∠ABC,且BD平分∠ADC.
本题考查全等三角形的判定及性质,掌握SSS定理及全等三角形对应角相等是本题的解题关键.
26、(1)见解析;(2)
【解析】
(1)根据题意作∠CAB的角平分线与BC的交点即为所求;
(2)根据含30°的直角三角形的性质及勾股定理即可求解.
【详解】
(1)
(2)由(1)可知为的角平分线
∴
∴
∴
∴
在中,由勾股定理得:
即
解得:∴
此题主要考查直角三角形的性质,解题的关键是熟知勾股定理的应用.
题号
一
二
三
四
五
总分
得分
成绩(分)
6
7
8
9
10
人数
3
2
3
1
1
年龄/岁
12
13
14
15
人数
1
3
4
2
三边a,b,c
S
c+b-a
c-b+a
3,4,5
6
5,12,13
20
8,15,17
24
三边a,b,c
S
c+b-a
c-b+a
3,4,5
6
6
4
5,12,13
30
20
6
8,15,17
60
24
10
相关试卷
这是一份江苏省盐城市亭湖区2024年数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。