江苏省盐城响水县联考2025届九上数学开学综合测试模拟试题【含答案】
展开
这是一份江苏省盐城响水县联考2025届九上数学开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列方程中,是一元二次方程的为( )
A.B.C.D.
2、(4分)不等式的解集是( )
A.B.C.D.
3、(4分)已知P1(1,y1),P2(2,y2)是正比例函数y=-2x图象上的两个点,则y1、y2 的大小关系是( )
A.y1<y2B.y1>y2C.y1=y2D.y1≥y2
4、(4分)如图,矩形是延长线上一点,是上一点,若则的度数是( )
A.B.
C.D.
5、(4分)下列函数关系式中,y是x的反比例函数的是
A.B.C.D.
6、(4分)下列命题中,正确的是( )
A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点
B.平行四边形是轴对称图形
C.三角形的中位线将三角形分成面积相等的两个部分
D.一组对边平行,一组对角相等的四边形是平行四边形
7、(4分)如图,在同一直线上,甲、乙两人分别从A,B两点同时向右出发,甲、乙均为匀速,图2表示两人之间的距离y(m)与所经过的时间t(s)之间的函数关系图象,若乙的速度为1.5m/s,则经过30s,甲自A点移动了( )
A.45mB.7.2mC.52.2mD.57m
8、(4分)已知,则(b+d≠0)的值等于( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图中的螺旋由一系列直角三角形组成,则第2019个三角形的面积为_______.
10、(4分)如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为_____.
11、(4分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表,如下表.已知该校学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.
12、(4分)直线y=kx+3经过点(2,-3),则该直线的函数关系式是____________
13、(4分)点A(-1,y1),B(3,y2)是直线y=-4x+3图象上的两点,则y1______y2(填“>”或“y2
【解析】
∵在中,,
∴在函数中,y随x的增大而减小.
又∵,
∴,即空格处应填“>”.
三、解答题(本大题共5个小题,共48分)
14、10%.
【解析】
试题分析:一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.
试题解析:设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)2万元.
则2500(1+x)2=3025,
解得x=0.1=10%,或x=-2.1(不合题意舍去).
答:这两年投入教育经费的平均增长率为10%.
考点:一元二次方程的应用.
15、
【解析】
设CE=EC'=x,则DE=3−x,由△ADB''∽△DEC,可得ADDE=DB'EC′,列出方程即可解决问题;
【详解】
设CE=EC'=x,则DE=3−x,
∵∠ADB'+∠EDC'=90°,∠B'AD+∠ADB'=90°,
∴∠B'AD=∠EDC',
∵∠B'=∠C'=90°,AB'=AB=3,AD=5,
∴DB'= = ,
∴△ADB'∽△DEC`,
∴ ,
∴ ,
∴x= .
∴CE=.
此题考查翻折变换(折叠问题),相似三角形的判定与性质,解题关键在于利用勾股定理进行计算
16、(1)证明见解析;(2)平行四边形DEBF是菱形,证明见解析.
【解析】
(1)由“ASA”可证△COE≌△AOF,可得CE=AF;
(2)由勾股定理的逆定理可证∠DBC=90°,通过证明四边形DEBF是平行四边形,可得DO=BO=1=BC,可得∠BOC=45°,由旋转的性质可得∠EOC=45°,可得EF⊥BD,即可证平行四边形DEBF是菱形.
【详解】
证明:(1)∵四边形ABCD是平行四边形
∴CD∥AB,AO=CO,AB=CD
∴∠DCO=∠BAO,且AO=CO,∠AOF=∠COE
∴△COE≌△AOF(ASA)
∴CE=AF,
(2)四边形BEDF是菱形
理由如下
如图,连接DF,BE,
∵DB=2,BC=1,
∴DB2+BC2=5=CD2,
∴∠DBC=90°
由(1)可得AF=CE,且AB=CD
∴DE=BF,且DE∥BF
∴四边形DEBF是平行四边形
∴DO=BO=1,
∴OB=BC=1,且∠OBC=90°
∴∠BOC=45°,
∵当AC绕点O逆时针方向旋转45°时
∴∠EOC=45°
∴∠EOB=90°,即EF⊥BD
∴平行四边形DEBF是菱形
本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,证明∠DBC=90°是本题的关键.
17、(1);(2)
【解析】
(1)先证明是直角三角形,然后将四边形分为可得出四边形的面积;
(2)根据格点和勾股定理先作出图形,然后由面积法可求出DF的值。
【详解】
解:(1)由图可得
是直角三角形
(2)如图,即为所求作的线段
又,且,
本题考查了勾股定理及其逆定理的应用,考查了复杂作图-作垂线,要求能灵活运用公式求面积和已经面积求高。
18、(1)众数:9,中位数:9;
(2)这20位同学实验操作得分的平均分为:;
(3)扇形①的圆心角度数是:(1-20%-25%-40%)×360°=54°.
【解析】
(1)得9分的有8人,频数最多;20个数据的中位数是第10个和第11个同学的得分的平均数;
(2)平均分=总分数÷总人数;
(3)扇形①的圆心角=百分比×360°
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 1;
【解析】
观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.
【详解】
∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,
∴不等式ax>kx+b的解集为x>1,
故答案为x>1.
本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.
22、1分米或分米.
【解析】
分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
2是斜边时,此直角三角形斜边上的中线长=×2=1分米,
2是直角边时,斜边=,
此直角三角形斜边上的中线长=×分米,
综上所述,此直角三角形斜边上的中线长为1分米或分米.
故答案为1分米或分米.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.
23、20
【解析】
令S=380m,即可求出t的值.
【详解】
解:当s=380m时,9t+t2=380,
整理得t2+18t﹣760=0,
即(t﹣20)(t+38)=0,
解得t1=20,t2=﹣38(舍去).
∴行驶380米需要20秒,
故答案为:20
本题主要考查根据函数值求自变量的值,能够利用方程的思想是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)①补全图形,如图一,见解析;②猜想DE=BC. 证明见解析;(2) ∠AED=30°或15°.
【解析】
(1)①根据要求画出图形即可解决问题.
②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.
(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.
【详解】
(1)①补全图形,如图一,
②猜想DE=BC.
如图,连接OD交BC于点F,连接AF
在△BDF和△COF中,
∴△BDF≌ΔCOF
∴DF=OF,BF=CF
∴F分别为BC和DO的中点
∵∠BAC=90°,F为BC的中点,
∴AF=BC.
∵OA=AE,F为BC的中点,
∴AF=ED.
∴DE=BC
(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,
∵AB=AC,
∴AF垂直平分线段BC,
∴MB=MC,∵∠OCB=30°,∠OBC=15°,
∴∠MBC=∠MCB=30°,
∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,
∵∠BAM=∠BOM=45°,BM=BM,
∴△BMA≌△BMO(AAS),
∴AM=OM,∠BMO=∠BMA=120°,
∴∠AMO=120°,
∴∠MAO=∠MOA=30°,
∴∠AED=∠MAO=30°.
如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,
∴∠MAO=∠MBO=30°-15°=15°,
∵DE∥AM,
∴∠AED=∠MAO=15°,
综上所述,满足条件的∠AED的值为15°或30°.
本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
25、(1);(2).
【解析】
(1)该市居民用水基本价格为a元/米1,超过6米1部分的价格为b元/米1,根据2月份和1月份的缴费情况列出a和b的二元一次方程组,求出a和b的值即可;
(2)直接根据(1)求出答案即可.
【详解】
解:⑴根据题意得
,
解得
答:该市居民用水基本价格为2元/米1,超过6米1部分的价格为5元/米1.
⑵ 6×2+(11.5-6)×5=49.5(元).
答:该市某居民今年4月份的用水量为11.5立方米,则应缴纳水费49.5元.
本题主要考查了二元一次方程组的应用,解答本题的关键是根据题意列出a和b的二元一次方程组,此题难度不大.
26、2+
【解析】
试题分析:先求出x2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.
试题解析:x2=(2﹣)2=7﹣4,
则原式=(7+4)(7﹣4)+(2+)(2﹣)+
=49﹣48+1+
=2+.
题号
一
二
三
四
五
总分
得分
批阅人
每周课外阅读时间(小时)
0~1
1~2(不含1)
2~3(不含2)
超过3
人 数
7
10
14
19
相关试卷
这是一份江苏省盐城市响水县2025届数学九上开学考试模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省盐城市2025届九上数学开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省盐城滨海县联考2025届数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。