开学活动
搜索
    上传资料 赚现金

    江苏省扬州市江都市第三中学2024年数学九上开学检测模拟试题【含答案】

    江苏省扬州市江都市第三中学2024年数学九上开学检测模拟试题【含答案】第1页
    江苏省扬州市江都市第三中学2024年数学九上开学检测模拟试题【含答案】第2页
    江苏省扬州市江都市第三中学2024年数学九上开学检测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省扬州市江都市第三中学2024年数学九上开学检测模拟试题【含答案】

    展开

    这是一份江苏省扬州市江都市第三中学2024年数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)对点Q(0,3)的说法正确的是( )
    A.是第一象限的点B.在轴的正半轴
    C.在轴的正半轴D.在轴上
    2、(4分)下列命题中,原命题和逆命题都是真命题的个数是( )
    ①两条对角线互相平分的四边形是平行四边形;
    ②两条对角线相等的四边形是矩形;
    ③菱形的两条对角线成互相垂直平分;
    ④两条对角线互相垂直且相等的四边形是正方形.
    A.4B.3C.2D.1
    3、(4分)一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)与放水时间t(分)有如下关系:
    下列结论中正确的是
    A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3
    C.每分钟的放水量是2m3D.y与t之间的关系式为y=38-2t
    4、(4分)如图,在中,,点、分别是、的中点,点是的中点,若,则的长度为( )
    A.4B.3C.2.5D.5
    5、(4分)如图,在中,点在边上,AE交于点,若DE=2CE,则( )
    A.B. C.D.
    6、(4分)在平面直角坐标系中,点在第一象限,若点关于轴的对称点在直线上,则的值为( )
    A.3B.2C.1D.-1
    7、(4分)使用同一种规格的下列地砖,不能进行平面镶嵌的是( )
    A.正三角形地砖 B.正四边形地砖 C.正五边形地砖 D.正六边形地砖
    8、(4分)下列图形既是中心对称图形,又是轴对称图形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,Rt△ABC中,∠BAC=90°,AB=AC,将△ABC绕点C顺时针旋转40°,得到△,与AB相交于点D,连接,则∠的度数是________.
    10、(4分)如图,在平行四边形中,点在上,,点是的中点,若点以1厘米/秒的速度从点出发,沿向点运动;点同时以2厘米/秒的速度从点出发,沿向点运动,点运动到停止运动,点也同时停止运动,当点运动时间是_____秒时,以点为顶点的四边形是平行四边形.
    11、(4分)如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= .
    12、(4分)将直线y=﹣2x+3向下平移2个单位得到的直线为_____.
    13、(4分)如图 ,矩形 ABCD 中,对角线 AC,BD 相交于点 O,若再补充一个条件就能使矩形 ABCD 成为正方形,则这个条件是 (只需填一个条件即可).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系中,BC∥OA,BC=3,OA=6,AB=3.
    (1)直接写出点B的坐标;
    (2)已知D、E(2,4)分别为线段OC、OB上的点,OD=5,直线DE交x轴于点F,求直线DE的解析式;
    (3)在(2)的条件下,点M是直线DE上的一点,在x轴上方是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
    15、(8分)如图,直线与直线相交于点.
    (1)求,的值;
    (2)根据图像直接写出时的取值范围;
    (3)垂直于轴的直线与直线,分别交于点,,若线段长为2,求的值.
    16、(8分)计算(+)﹣(+6)
    17、(10分)为调查某校初二学生一天零花钱的情况,随机调查了初二级部分学生的零钱金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
    (1)本次接受随机抽样调查的学生人数为_____,图①中的值是_____;
    (2)求本次调查获取的样本数据的平均数;
    (3)根据样本数据,估计该年级300名学生每天零花钱不多于10元的学生人数.
    18、(10分)如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
    (1)直接写出直线L的解析式;
    (2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
    (3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.
    20、(4分)当m=_____时,是一次函数.
    21、(4分)命题“对顶角相等”的逆命题的题设是___________.
    22、(4分)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.
    23、(4分)如图,在平面直角坐标系中,点为第一象限内一点,且.连结,并以点为旋转中心把逆时针转90°后得线段.若点、恰好都在同一反比例函数的图象上,则的值等于________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知x=,y=.
    (1)x+y= ,xy= ;
    (2)求x3y+xy3的值.
    25、(10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
    (1)求甲、乙两种树苗每棵的价格各是多少元?
    (2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
    26、(12分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.
    (1)求甲每小时加工多少个零件?
    (2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据横坐标为0可知点Q在y轴上,纵坐标大于0,则点在正半轴.
    【详解】
    点Q(0,3)在y轴的正半轴,
    故选B.
    本题考查坐标系中的点坐标特征,熟记坐标轴上的点横纵坐标的特征是解题的关键.
    2、C
    【解析】
    分别写出各个命题的逆命题,然后对原命题和逆命题分别进行判断即可.
    【详解】
    解:①两条对角线互相平分的四边形是平行四边形,为真命题;其逆命题为平行四边形的对角线互相平分,为真命题;
    ②两条对角线相等的四边形是矩形,为假命题;逆命题为:矩形的对角线相等,是真命题;
    ③菱形的两条对角线互相垂直平分,为真命题;逆命题为:对角线互相垂直平分的四边形是菱形,为真命题;
    ④两条对角线互相垂直且相等的四边形是正方形,为假命题;其逆命题为:正方形的对角线互相垂直且相等,为真命题,
    故选:C.
    本题考查命题与定理的知识,解题的关键是能够写出该命题的逆命题.
    3、C
    【解析】
    根据表格内的数据,利用待定系数法求出y与t之间的函数关系式,由此可得出D选项错误;由-2<0可得出y随t的增大而减小,A选项错误;代入t=15求出y值,由此可得出:放水时间为15分钟时,水池中水量为10m3,B选项错误;由k=-2可得出每分钟的放水量是2m3,C选项正确.综上即可得出结论.
    【详解】
    解:设y与t之间的函数关系式为y=kt+b,
    将(1,38)、(2,36)代入y=kt+b,
    ,解得:
    ∴y与t之间的函数关系式为y=-2t+40,D选项错误;
    ∵-2<0,
    ∴y随t的增大而减小,A选项错误;
    当t=15时,y=-2×15+40=10,
    ∴放水时间为15分钟时,水池中水量为10m3,B选项错误;
    ∵k=-2,
    ∴每分钟的放水量是2m3,C选项正确.
    故选:C.
    本题考查一次函数的应用,利用待定系数法求出函数关系式是解题的关键.
    4、C
    【解析】
    利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.
    【详解】
    解:在Rt△ABC中,
    ∵,点是的中点,
    ∴AD=BD= CD=AB=1,
    ∵BF=DF,BE=EC,
    ∴EF=CD=2.1.
    故选:C.
    本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.
    5、D
    【解析】
    根据DE=2CE可得出DE=CD,再由平行四边形的性质得出CD=AB,从而由即可得出答案.
    【详解】
    解:∵DE=2CE,
    ∴DE=CD,
    又∵,AB=CD,
    ∴.
    故选:D.
    本题考查平行四边形的性质及平行线分线段成比例的知识,解答本题的关键是根据DE=2CE得出的比值,难度一般.
    6、C
    【解析】
    根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.
    【详解】
    解:∵点A(2,m),
    ∴点A关于x轴的对称点B(2,−m),
    ∵B在直线y=−x+1上,
    ∴−m=−2+1=−1,
    ∴m=1,
    故选C.
    此题主要考查了关于x轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.
    7、C
    【解析】试题解析:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;
    B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;
    C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;
    D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.
    故选C.
    8、D
    【解析】
    根据中心对称图形与轴对称图形的定义依次分析各选项即可判断.
    【详解】
    A只是轴对称图形,B只是中心对称图形,C只是轴对称图形,D既是中心对称图形,又是轴对称图形,故选D.
    本题考查中心对称图形与轴对称图形的定义,解题的关键是知道轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、20
    【解析】
    由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.
    【详解】
    ∵将△ABC绕点C顺时针旋转40°得到△A'B'C,
    ∴△ABC≌△A'B'C
    ∴AC=A'C,∠ACA′=40°,∠BAC=∠B'A'C=90°
    ∴∠AA'C=70°=∠A'AC
    ∴∠B'A'A=∠B'A'C−∠AA'C=20°.
    本题考查全等三角形的判定与性质,等腰直角三角形,旋转的性质.旋转前后对应线段相等,对应角相等,对应图形全等.在旋转过程中,一定要仔细读题,能理解∠ACA′即为旋转角等于40°,AC和A'C为一组对应线段.
    10、3或
    【解析】
    由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠ADB=∠CBD,
    ∵∠FBD=∠CBD,
    ∴∠FBD=∠FDB,
    ∴FB=FD=11cm,
    ∵AF=5cm,
    ∴AD=16cm,
    ∵点E是BC的中点,
    ∴CE=BC=AD=8cm,
    要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
    设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
    分两种情况:①当点Q在EC上时,根据PF=EQ可得: 5-t=8-2t,
    解得:t=3;
    ②当Q在BE上时,根据PF=QE可得:5-t=2t-8,
    解得:t=.
    所以,t的值为:t=3或t=.
    故答案为:3或.
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.
    11、1
    【解析】
    试题分析:已知D、E分别是边AB、AC的中点,BC=8,根据三角形的中位线定理得到DE=BC=1.
    考点:三角形中位线定理.
    12、y=﹣2x+2
    【解析】
    根据一次函数图象与几何变换得到直线y=-2x+3向下平移2个单位得到的函数解析式为y=-2x+3-2.
    【详解】
    解:直线y=﹣2x+3向下平移2个单位得到的函数解析式为y=﹣2x+3﹣2=﹣2x+2.
    故答案为:y=﹣2x+2
    本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.
    13、AB=BC(答案不唯一).
    【解析】
    根据正方形的判定添加条件即可.
    【详解】
    解:添加的条件可以是AB=BC.理由如下:
    ∵四边形ABCD是矩形,AB=BC,
    ∴四边形ABCD是正方形.
    故答案为AB=BC(答案不唯一).
    本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.
    三、解答题(本大题共5个小题,共48分)
    14、(1)B(3,6);(2)y=﹣x+5;(3)点N坐标为(4,8)或(﹣5,2.5)或(﹣2,)..
    【解析】
    (1)过B作BG⊥OA于点G,在Rt△ABG中,利用勾股定理可求得BG的长,则可求得B点坐标;
    (2)由条件可求得D点坐标,利用待定系数法可求得直线DE的解析式;
    (3)当OD为边时,则MO=OD=5或MD=OD=5,可求得M点坐标,由MN∥OD,且MN=OD可求得N点坐标;当OD为对角线时,则MN垂直平分OD,则可求得M、N的纵坐标,则可求得M的坐标,利用对称性可求得N点坐标.
    【详解】
    解:(1)如图1,过B作BG⊥OA于点G,
    ∵BC=3,OA=6,
    ∴AG=OA﹣OG=OA﹣BC=6﹣3=3,
    在Rt△ABG中,由勾股定理可得AB2=AG2+BG2,即(3)2=32+BG2,解得BG=6,
    ∴OC=6,
    ∴B(3,6);
    (2)由OD=5可知D(0,5),
    设直线DE的解析式是y=kx+b
    把D(0,5)E(2,4)代入得,解得:,
    ∴直线DE的解析式是y=﹣x+5;
    (3)当OD为菱形的边时,则MN=OD=5,且MN∥OD,
    ∵M在直线DE上,
    ∴设M(t,﹣ t+5),
    ①当点N在点M上方时,如图2,则有OM=MN,
    ∵OM2=t2+(﹣t+5)2,
    ∴t2+(﹣t+5)2=52,解得t=0或t=4,
    当t=0时,M与D重合,舍去,
    ∴M(4,3),
    ∴N(4,8);
    ②当点N在点M下方时,如图3,则有MD=OD=5,
    ∴t2+(﹣t+5﹣5)2=52,解得t=2或t=﹣2,
    当t=2时,N点在x轴下方,不符合题意,舍去,
    ∴M(﹣2, +5),
    ∴N(﹣2,);
    当OD为对角线时,则MN垂直平分OD,
    ∴点M在直线y=2.5上,
    在y=﹣x+5中,令y=2.5可得x=5,
    ∴M(5,2.5),
    ∵M、N关于y轴对称,
    ∴N(﹣5,2.5),
    综上可知存在满足条件的点N,其坐标为(4,8)或(﹣5,2.5)或(﹣2,).
    一次函数的综合应用,涉及勾股定理、待定系数法、菱形的性质、分类讨论及方程思想.在(2)中求得E点坐标是解题的关键,在(3)中求得M点的坐标是解题的关键,注意分类讨论.
    15、(1),;(2);(3)或
    【解析】
    (1)将点代入到直线中,即可求出b的值,然后将点P的坐标代入直线中即可求出m的值;
    (2)根据图象即可得出结论;
    (3)分别用含a的式子表示出点C和点D的纵坐标,再根据CD的长和两点之间的距离公式列出方程即可求出a.
    【详解】
    解:(1)∵点在直线上

    ∵点在直线上,


    (2)由图象可知:当时,;
    (3)当时,,当时,


    解得或
    此题考查的是一次函数的图象及性质,掌握根据直线上的点求直线的解析式、一次函数与一元一次不等式的关系和直角坐标系中两点之间的距离公式是解决此题的关键.
    16、
    【解析】
    先去括号,同时把各根式化成最简二次根式,再合并同类二次根即可.
    【详解】
    原式=2+﹣﹣1
    =2+﹣1.
    本题考查了二次根式的加减,能正确合并同类二次根式是解答此题的关键.
    17、(1)50,32;(2)16;(3)1.
    【解析】
    (1)用零花钱为5元频数除以本组所占百分比即可求出抽样调查人数,求出零花钱为10元人数所占比例即可求出m;
    (2)根据加权平均数计算公式即可解决问题;
    (3)用300乘以样本中零花钱不多于10元的学生所占百分比即可求解.
    【详解】
    解:(1)4÷8%=50(人),

    ∴m=32;
    (2)(元);
    (3)(人).
    本题考查了扇形统计图,条形统计图,加权平均数,用样本估计总体等知识,熟记相关知识点是解题关键.
    18、(1)y=1﹣x;(2),S有最大值;(3)存在点C(1,1).
    【解析】
    (1)已知直线L过A,B两点,可将两点的坐标代入直线的解析式中,用待定系数法求出直线L的解析式;
    (2)求三角形OPQ的面积,就需知道底边OP和高QM的长,已知了OP为t,关键是求出QM的长.已知了QM垂直平分OP,那么OM=t,然后要分情况讨论:①当OM<OB时,即0<t<2时,BM=OB﹣OM,然后在等腰直角三角形BQM中,即可得出QM=BM,由此可根据三角形的面积公式得出S与t的函数关系式;②当OM>OB时,即当t≥2时,BM=OM﹣OB,然后根据①的方法即可得出S与t的函数关系式,然后可根据0<t<2时的函数的性质求出S的最大值;
    (3)如果存在这样的点C,那么CQ=QP=OQ,因此C,O就关于直线BL对称,因此C的坐标应该是(1,1).那么只需证明CQ⊥PQ即可.分三种情况进行讨论:①当Q在线段AB上(Q,B不重合),且P在线段OB上时.要证∠CQP=90°,那么在四边形CQPB中,就需先证出∠QCB与∠QPB互补,由于∠QPB与∠QPO互补,而∠QPO=∠QOP,因此只需证∠QCB=∠QOB即可,根据折叠的性质,这两个角相等,由此可得证;②当Q在线段AB上,P在OB的延长线上时,根据①已得出∠QPB=∠QCB,那么这两个角都加上一个相等的对顶角后即可得出∠CQP=∠CBP=90度;③当Q与B重合时,很显然,三角形CQP应该是个等腰直角三角形.综上所述即可得出符合条件C点的坐标.
    【详解】
    (1)y=1﹣x;
    (2)∵OP=t,
    ∴Q点的横坐标为t,
    ①当,即0<t<2时,QM=1-t,
    ∴S△OPQ=t(1﹣t),
    ②当t≥2时,QM=|1﹣t|=t﹣1,
    ∴S△OPQ=t(t﹣1),

    当0<t<1,即0<t<2时,S=t(1﹣t)=﹣(t﹣1)2+,
    ∴当t=1时,S有最大值;
    (3)由OA=OB=1,故△OAB是等腰直角三角形,
    若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,
    则PQ=QC,
    所以OQ=QC,又L1∥x轴,则C,O两点关于直线L对称,
    所以AC=OA=1,得C(1,1).下面证∠PQC=90度.连CB,则四边形OACB是正方形.
    ①当点P在线段OB上,Q在线段AB上(Q与B、C不重合)时,如图﹣1,
    由对称性,得∠BCQ=∠QOP,∠QPO=∠QOP,
    ∴∠QPB+∠QCB=∠QPB+∠QPO=180°,
    ∴∠PQC=360°﹣(∠QPB+∠QCB+∠PBC)=90度;
    ②当点P在线段OB的延长线上,Q在线段AB上时,如图﹣2,如图﹣3
    ∵∠QPB=∠QCB,∠1=∠2,
    ∴∠PQC=∠PBC=90度;
    ③当点Q与点B重合时,显然∠PQC=90度,
    综合①②③,∠PQC=90度,
    ∴在L1上存在点C(1,1),使得△CPQ是以Q为直角顶点的等腰直角三角形.
    本题结合了三角形的相关知识考查了一次函数及二次函数的应用,要注意的是(2)中为保证线段的长度不为负数要分情况进行求解.(3)中由于Q,P点的位置不确定,因此要分类进行讨论不要漏解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、13
    【解析】
    试题解析:
    故答案为
    点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.
    20、3或0
    【解析】
    根据一次函数的定义即可求解.
    【详解】
    依题意得m-3≠0,2m+1=1或m-3=0,
    解得m=0或m=3,
    故填:3或0.
    此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.
    21、两个角相等
    【解析】
    交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.
    【详解】
    解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,
    题设是:两个角相等
    故答案为:两个角相等.
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    22、1
    【解析】
    由于∠C=90°,∠ABC=60°,可以得到∠A=10°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=10°,BD=AD=6,再由10°角所对的直角边等于斜边的一半即可求出结果.
    【详解】
    ∵∠C=90°,∠ABC=60°,
    ∴∠A=10°.
    ∵BD平分∠ABC,
    ∴∠CBD=∠ABD=∠A=10°,
    ∴BD=AD=6,
    ∴CD=BD=6×=1.
    故答案为1.
    本题考查了直角三角形的性质、含10°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.
    23、
    【解析】
    分析: 过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对角相等,且AE=BD=b,OE=AD=a,进而表示出ED和OE+BD的长,即可表示出B坐标,由A与B都在反比例函数图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出的值.
    详解:过A作AE⊥x轴,过B作BD⊥AE,
    ∵∠OAB=90°,
    ∴∠OAE+∠BAD=90°,
    ∵∠AOE+∠OAE=90°,
    ∴∠BAD=∠AOE,
    在△AOE和△BAD中,
    ∴△AOE≌△BAD(AAS),
    ∴AE=BD=b,OE=AD=a,
    ∴DE=AE-AD=b-a,OE+BD=a+b,
    则B(a+b,b-a),
    ∵A与B都在反比例图象上,得到ab=(a+b)(b-a),整理得:b2-a2=ab,
    即,
    ∵△=1+4=5,
    ∴,
    ∵点A(a,b)为第一象限内一点,
    ∴a>0,b>0,
    则,
    故答案为:.
    点睛:本题主要考查反比例函数图象上点的坐标特征,解决本题的关键是构造全等三角形根据反比例函数上点的坐标特征列关系式.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)2,1;(2)10.
    【解析】
    (1)将x、y的值分别代入两个式子,利用二次根式的运算法则进行计算即可;
    (2)原式先进行变形,继而利用整体思想将(1)中的结果代入进行计算即可.
    【详解】
    (1)∵x=,y=+,
    ∴x+y=(-)+(+)=2,
    xy=(-)×(+)=3-2=1,
    故答案为2,1;
    (2)x3y+xy3
    =xy(x2+y2)
    =xy[(x+y)2-2xy]
    =1×[(2)2-2×1]=10.
    本题考查了二次根式的混合运算,涉及了代数式求值,因式分解,完全平方公式的变形等,正确把握相关的运算法则是解题的关键.
    25、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
    【解析】
    (1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
    (2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
    【详解】
    (1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
    依题意有 ,
    解得:x=30,
    经检验,x=30是原方程的解,
    x+10=30+10=40,
    答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
    (2)设他们可购买y棵乙种树苗,依题意有
    30×(1﹣10%)(50﹣y)+40y≤1500,
    解得y≤11,
    ∵y为整数,
    ∴y最大为11,
    答:他们最多可购买11棵乙种树苗.
    本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
    26、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.
    【解析】
    (1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求解,
    (2)乙最多可以耽搁多长时间,这是一个不等式,把乙的完成的工作量+甲完成的工作量≥1000,
    【详解】
    解:(1)设甲每小时加工x个零件,则乙每小时加工(x﹣10)个零件,
    根据题意,得:=,
    解得:x=50,
    经检验x=50是分式方程的解,
    答:甲每小时加工50个零件,则乙每小时加工40个零件;
    (2)设乙耽搁的时间为x小时,
    根据题意,得:50x+(50+40)(12﹣x)≥1000,
    解得:x≤2,
    答:乙最多可以耽搁2小时.
    本题主要考查分式方程和一元一次不等式的实际应用
    题号





    总分
    得分
    批阅人
    放水时间(分)
    1
    2
    3
    4
    ...
    水池中水量(m)
    38
    36
    34
    32
    ...
    ∠AOE=∠BAD,
    ∠AEO=∠BDA=90°
    AO=BA

    相关试卷

    江苏省扬州市江都区实验中学2024年数学九上开学考试模拟试题【含答案】:

    这是一份江苏省扬州市江都区实验中学2024年数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省扬州市江都区城区2024年数学九上开学复习检测模拟试题【含答案】:

    这是一份江苏省扬州市江都区城区2024年数学九上开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省扬州市2025届九上数学开学检测试题【含答案】:

    这是一份江苏省扬州市2025届九上数学开学检测试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map