江苏省镇江市句容市2024-2025学年九上数学开学质量检测试题【含答案】
展开
这是一份江苏省镇江市句容市2024-2025学年九上数学开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )
A.(2,2)B.(2,)C.(,2)D.(+1,
2、(4分)如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,连接OC,则∠AOC的度数为( )
A.151°B.122°C.118°D.120°
3、(4分)一元二次方程2x(x+1)=(x+1)的根是()
A.x=0B.x=1
C.D.
4、(4分)平移直线得到直线,正确的平移方式是( )
A.向上平移个单位长度B.向下平移个单位长度
C.向左平移个单位长度D.向右平移个单位长度
5、(4分)下列运算正确的是( )
A.B.
C.D.
6、(4分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第2018个正方形的边长为
A.22017B.22018C.D.
7、(4分)为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为( )
A.20,16B.l6,20C.20,l2D.16,l2
8、(4分)如果是二次根式,那么x应满足的条件是( )
A.x≠2的实数B.x<2的实数
C.x>2的实数D.x>0且x≠2的实数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:
由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为1.
10、(4分)函数的自变量的取值范围是.
11、(4分)若式子在实数范围内有意义,则应满足的条件是_____________.
12、(4分)若二次根式有意义,则的取值范围是______________.
13、(4分)已知一个直角三角形斜边上的中线长为6 cm,那么这个直角三角形的斜边长为______cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,在现有网格中,以格点为顶点,分别按下列要求画三角形。
(1)在图1中,画一个等腰直角三角形,使它的面积为5;
(2)在图2中,画一个三角形,使它的三边长分别为3,2 , ;
(3)在图3中,画一个三角形,使它的三边长都是有理数.
15、(8分)计算: (1)计算:- (2)化简: (x>0)
16、(8分)(问题原型)在图①的矩形中,点、、、分别在、、、上,若,则称四边形为矩形的反射四边形;
(操作与探索)在图②,图③的矩形中,,,点、分别在、边的格点上,试利用正方形网格分别在图②、图③上作矩形的反射四边形;
(发现与应用)由前面的操作可以发现,一个矩形有不同的反射四边形,且这些反射四边形的周长都相等.若在图①的矩形中,,,则其反射四边形的周长为______.
17、(10分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某单位计划在室内安装空气净化装置,需购进A,B两种设备,每台B种设备价格比每台A种设备价格多700元,花3000元购买A种设备和花7200元购买B种设备的数量相同.
(1)求A种、B种设备每台各多少元?
(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于17000元,求A种设备至少要购买多少台?
18、(10分)如图1,点是菱形对角线的交点,已知菱形的边长为12,.
(1)求的长;
(2)如图2,点是菱形边上的动点,连结并延长交对边于点,将射线绕点顺时针旋转交菱形于点,延长交对边于点.
①求证:四边形是平行四边形;
②若动点从点出发,以每秒1个单位长度沿的方向在和上运动,设点运动的时间为,当为何值时,四边形为矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B的坐标是(________).
20、(4分)如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与▱ABCD的面积之比是______.
21、(4分)用科学记数法表示:__________________.
22、(4分)在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;
23、(4分)已知反比例函数的图象经过点,则b的值为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.
(1)求证:BE⊥CF;
(2)若AB=a,CF=b,求BE的长.
25、(10分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:
(1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x>100)条之间的函数关系式;
(2)王先生选取哪种方式购买跳绳省钱?
26、(12分)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图,线段、折线分别表示两车离甲地的距离(单位:千米)与时间(单位:小时)之间的函数关系.
(1)线段与折线中,______(填线段或折线)表示货车离甲地的距离与时间之间的函数关系.
(2)求线段的函数关系式(标出自变量取值范围);
(3)货车出发多长时间两车相遇?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.
【详解】
连接DB,如图,
由作法得EF垂直平分AB,
∴DA=DB,
∵四边形ABCD是菱形,
∴AD∥BC,AD=AB,
∴AD=AB=DB,
∴△ADB为等边三角形,
∴∠DAB=60°,
∴∠ABO=60°,
∵A(0,),
∴OA=,
∴OB=OA=1,AB=2OB=2,
∴AD=AB=2,
而AD平行x轴,
∴D(2,).
故选:B.
考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质
2、B
【解析】
根据等腰三角形的性质得出AO垂直平分BC,根据线段垂直平分线性质得出AO=BO、OB=OC,利用等边对等角及角平分线性质,内角和定理求出所求即可.
【详解】
连接BO,延长AO交BC于E,
∵AB=AC,AO平分∠BAC,
∴AO⊥BC,AO平分BC,
∴OB=OC,
∵O在AB的垂直平分线上,
∴AO=BO,
∴AO=CO,
∴∠OAC=∠OCA=∠OAD=×58°=29°,
∴∠AOC=180°-2×29°=122°,
故选B.
此题考查了等腰三角形的性质,以及线段垂直平分线的性质,熟练掌握各自的性质是解本题的关键.
3、D
【解析】
移项,提公因式法分解因式,即可求得方程的根.
【详解】
解:2x(x+1)=(x+1),
2x(x+1)-(x+1)=0,
(2x-1)(x+1)=0,
则方程的解是:x1= ,x2=-1.
故选:D.
本题考查一元二次方程的解法-因式分解法,根据方程的特点灵活选用合适的方法是解题的关键.
4、A
【解析】
根据“上加下减”法则进行判断即可.
【详解】
将直线向上平移个单位长度得到直线,
故选:A.
本题主要考查了函数图像平移的性质,熟练掌握相关平移特点是解题关键.
5、D
【解析】
试题分析:A、,故A选项错误;
B、,故B选项错误;
C、,故C选项错误;
D、,故D选项正确,
故选D.
考点:约分
6、C
【解析】
分析:首先根据勾股定理求出AC、AE、AG的长度,可以看出每个正方形的边长都是前一个正方形边长的倍,即可解决问题.
详解:∵四边形ABCD为正方形,
∴AB=BC=1,∠B=90°,
∴AC2=12+12,AC=
同理可得:AE=()2,
AG=()3,
……,
∴第n个正方形的边长an=()n-1.
∴第2018个正方形的边长a2018=()2.
故选C.
点睛:此题主要考查了正方形的性质、勾股定理及其应用问题;应熟练掌握正方形有关定理和勾股定理并能灵活运用,通过计算发现规律是解答本题的关键.
7、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【详解】
解:在这一组数据中20是出现次数最多的,故众数是20;
将这组数据从大到小的顺序排列后,处于中间位置的数是1,1,那么这组数据的中位数1.
故选:A.
本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.
8、C
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于2,分母不等于2,列不等式组求解.
【详解】
根据题意得:,
解得:x>1.
故选C.
主要考查了二次根式的意义和性质.概念:式子(a≥2)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于2.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、12.2
【解析】
由表格可知,开始油箱中的油为111L,每行驶1小时,油量减少8L,据此可得y与t的关系式.
【详解】
解:由题意可得:y=111-8t,
当y=1时,1=111-8t
解得:t=12.2.
故答案为:12.2.
本题考查函数关系式.注意贮满111L汽油的汽车,最多行驶的时间就是油箱中剩余油量为1时的t的值.
10、x≠1
【解析】
该题考查分式方程的有关概念
根据分式的分母不为0可得
X-1≠0,即x≠1
那么函数y=的自变量的取值范围是x≠1
11、
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
解:二次根式在实数范围内有意义,则x-1≥0,
解得:x≥1.
故答案为:x≥1.
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
12、
【解析】
根据二次根式的意义,被开方数是非负数求解即可.
【详解】
根据题意得:
解得,
故答案为:.
本题主要考查学生对二次根式有意义时被开方数的取值的掌握,熟知二次根式有意义的条件是解题的关键.
13、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半解答即可.
解:∵直角三角形斜边上的中线长为6,
∴这个直角三角形的斜边长为1.
考查的是直角三角形的性质,即直角三角形斜边上的中线等于斜边的一半.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)详见解析;(3)详见解析;
【解析】
(1)画一个边长为 的直角三角形即可;
(2)利用勾股定理画出三角形即可;
(3)画一个三边长为3,4,5的三角形即可.
【详解】
(1)如图所示;
(2)如图所示;
(3)如图所示.
此题考查勾股定理,作图—应用与设计作图,解题关键在于掌握作图法则.
15、(1);(2).
【解析】
(1)先化简二次根式,然后再进行合并即可;
(2)先分别化简分子、分母中的二次根式,然后再进行分母有理化即可.
【详解】
(1)原式=2-
=;
(2)原式=
=
=.
本题考查了二次根式的混合运算,熟练掌握相关的运算法则以及分母有理化的方法是解题的关键.
16、操作与探索:见解析:发现与应用:10.
【解析】
(1)根据网格作出相等的角即可得到反射四边形;
(2)延长GH交PN的延长线与点A,证明△FPE≌△FPB,根据全等三角形的性质得到AB=2NP,再证明GA=GB,过点G作GK⊥NP于K,根据等腰三角形的性质求出KB=AB=4,再利用勾股定理求出GB的长,即可求出四边形EFGH的周长.
【详解】
(1)作图如下:
(2)延长GH交PN的延长线与点A,过点G作GK⊥NP于K,
∵∠1=∠2,∠1=∠5,∴∠2=∠5,
又PF=PF,∠FPE=∠FPB,
∴△FPE≌△FPB,
∴EF=BF,EP=PB,
同理AH=EH,NA=EN,
∴AB=2NP=8,
∵∠B=90°-∠5=90°-∠1,∠A=90°-∠3,
∴∠A=∠B,∴GA=GB,
则KB=AB=4,∴GB=
∴四边形EFGH的周长为2GB=10.
此题主要考查矩形的性质,解题的关键是熟知全等三角形的判定与性质.
17、(1)每台A种设备500元,每台B种设备1元;(2)A种设备至少要购买2台.
【解析】
(1)设每台A种设备x元,则每台B种设备(x+700)元,根据数量=总价÷单价结合花3000元购买A种设备和花7200元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设购买A种设备m台,则购买B种设备(20−m)台,根据总价=单价×数量结合总费用不高于17000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.
【详解】
(1)设每台A种设备x元,则每台B种设备(x+700)元,
根据题意得:,
解得:x=500,
经检验,x=500是原方程的解,
∴x+700=1.
答:每台A种设备500元,每台B种设备1元;
(2)设购买A种设备m台,则购买B种设备(20﹣m)台,
根据题意得:500m+1(20﹣m)≤17000,
解得:m≥2.
答:A种设备至少要购买2台.
本题考查了分式方程的应用以及一元一次不等式的应用,正确的理解题意是解题的关键.
18、(1);(2)①见解析;②或或或.
【解析】
(1)解直角三角形求出BO即可解决问题;
(2)①想办法证明OE=OG,HO=FO即可解决问题;
②分四种情形画出图形,(Ⅰ)如图1,当时,,关于对称,(Ⅱ)如图2,当,关于对称时,,(Ⅲ)如图3,此时与图2中的的位置相同,(Ⅳ)如图4,当,关于对称时,四边形EFGH是矩形.分别求解即可解决问题;
【详解】
解:(1)∵四边形为菱形,,
∴.
∵,
∴,
∴,
∴.
(2)①∵四边形ABCD是菱形,
∴AB∥CD,BO=OD,
∴∠EBO=∠GDO
∵∠BOE=∠DOG,
∴△EOB≌△GOD,
∴EO=GO,同理可得HO=FO,
∴四边形EFGH是平行四边形.
②②I.如图2-1,当点、都在上时,四边形是矩形,作的平分线,
,
.
,
,
,作于.设,则,
,
,
,
,
时,四边形是矩形.
II.如解图2-2,当点在上,点在上,四边形是矩形.
由菱形和矩形都是轴对称图形可知,,
,
,
,
,
,
时,四边形是矩形.
III. 如解图2-3,当点、都在上时,四边形是矩形.
由同理可证:,
时,四边形是矩形.
IV. 如解图2-4,当点在上,点在上,四边形是矩形.
由菱形、矩形都是轴对称图形可知,,
,
,过点作,
,
,
,
,
,
,
时,四边形是矩形.
综上所述,为,,,时,四边形是矩形.
本题考查了四边形综合、菱形的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1 -1
【解析】
让横坐标不变,纵坐标加1可得到所求点的坐标.
【详解】
∵﹣2+1=﹣1,
∴点B的坐标是(1,﹣1),
故答案为1,﹣1.
本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.
20、1:1
【解析】
如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S,证明四边形EFQP是平行四边形,求出S平行四边形EFQP=1S和S△TPQ=2S即可解决问题.
【详解】
解:如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S.
∵DE=AE,DF=FC,
∴EF∥AC,EF:AC=1:2,
∴S△DEF=S△DAC=×1S=S,
同理可证PQ∥AC,PQ:AC=1:2,S△CFQ=S△PQB=S△APE=S,
∴四边形EFQP是平行四边形,
∴S平行四边形EFQP=1S,
∴S△TPQ=S平行四边形EFQP=2S,
∴S△TPQ:S平行四边形ABCD=2S:8S=1:1,
故答案为1:1.
本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.
21、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10 ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
故答案为.
此题考查科学记数法,解题关键在于掌握一般形式.
22、﹣3<x<1
【解析】
根据第四象限内横坐标为正,纵坐标为负可得出答案.
【详解】
∵点P(2x-6,x-5)在第四象限,
∴
解得-3<x<1.故答案为-3<x<1.
本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.
23、-1
【解析】
将点的坐标代入反比例函数解析式即可解答.
【详解】
把点(-1,b)代入y=,得b==-1.
故答案是:-1.
考查了反比例函数图象上点的坐标特征.函数图象上所有点的坐标均满足该函数解析式.
二、解答题(本大题共3个小题,共30分)
24、(1)见详解;(2).
【解析】
(1)由平行四边形的性质和角平分线的性质,证明∠EBC+∠FCB=90°即可解决问题;
(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.构造特殊四边形菱形,利用菱形的性质,结合勾股定理即可解决问题;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABC+∠BCD=180°,
∵BE,CF分别是∠ABC,∠BCD的平分线,
∴∠EBC=∠ABC,∠FCB=∠BCD,
∴∠EBC+∠FCB=90°,
∴∠BGC=90°.
即BE⊥CF.
(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵AD∥BC,
∴∠AEB=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∴四边形ABHE是菱形,
∴AH,BE互相垂直平分;
∵BE⊥CF,
∴AH∥CF,
∴四边形AHCF是平行四边形,
∴AP=;
在Rt△ABP中,由勾股定理,得:
,
∴.
本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质、菱形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造特殊四边形解决问题.
25、(1)y1=32x;y2=28x+1200;(2)当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
【解析】
(1)根据题意和表格求得用这两种方式购买跳绳所需的资金y(元)与购买的跳绳数x(条)之间的函数关系式即可.(2)比较(1)中求出的两个函数的大小并求出x的范围即可.(3)令y=10000,可以求得两种方式分别可以购买的跳绳数,从而可以得到王先生用不超过10000元购买跳绳,他最多能购买多少条跳绳.
【详解】
(1)由题意可得:
王先生在实体店购买跳绳所需的资金y1(元)与购买的跳绳数x(条)之间的函数关系式为:y1=40x×0.8=32x;
王先生在网店购买跳绳所需的资金y2(元)与购买的跳绳数x(条)之间的函数关系式为:y2=40×100+(x-100)×40×0.7=28x+1200;
(2)当y1>y2时,32x>28x+1200,
解得x>300;
当y1=y2时,32x=28x+1200,
解得x=300;
当y1<y2时,32x>28x+1200,
解得x<300;
∴当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
本题考查一次函数的应用,明确题意,找出所求问题需要的条件,列出相应的函数关系式,会根据函数的值,求出相应的x的值是解题关键.
26、(1)OA;(2)y=110x−195(2.5≤x≤4.5);(3)3.9小时.
【解析】
(1)根据题意可以分别求得两个图象中相应函数对应的速度,从而可以解答本题;
(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;
(3)根据题意可以求得OA对应的函数解析式,从而可以解答本题.
【详解】
(1)线段OA表示货车货车离甲地的距离y与时间x之间的函数关系,
理由:vOA=(千米/时),vBCD=
∵60<90轿车的平均速度大于货车的平均速度,
∴线段OA表示货车离甲地的距离y与时间x之间的函数关系.
故答案为:OA;
(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
∵C(2.5,80),D(4.5,300)在其图象上,
∴
解得
∴CD段函数解析式:y=110x−195(2.5≤x≤4.5);
(3)设线段OA对应的函数解析式为y=kx,
300=5k,得k=60,
即线段OA对应的函数解析式为y=60x,
,解得
即货车出发3.9小时两车相遇.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
题号
一
二
三
四
五
总分
得分
考试分数(分)
20
16
12
8
人数
24
18
5
3
t(小时)
1
1
2
3
y(升)
111
92
84
76
购买方式
标价(元条)
优惠条件
实体店
40
全部按标价的8折出售
网店
40
购买100或100条以下,按标价出售;购买100条以上,从101条开始按标价的7折出售(免邮寄费)
相关试卷
这是一份江苏省句容市华阳学校2024-2025学年九上数学开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省句容市崇明片2024-2025学年数学九上开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省句容市2024-2025学年数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。