终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省镇江市实验2024年九年级数学第一学期开学联考模拟试题【含答案】

    立即下载
    加入资料篮
    江苏省镇江市实验2024年九年级数学第一学期开学联考模拟试题【含答案】第1页
    江苏省镇江市实验2024年九年级数学第一学期开学联考模拟试题【含答案】第2页
    江苏省镇江市实验2024年九年级数学第一学期开学联考模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省镇江市实验2024年九年级数学第一学期开学联考模拟试题【含答案】

    展开

    这是一份江苏省镇江市实验2024年九年级数学第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为( )
    A.2B.4C.8D.4
    2、(4分)不等式组的解集为( )
    A.x>B.x>1C.<x<1D.空集
    3、(4分)下列等式一定成立的是( )
    A.-=B.∣2-=2-C.D.-=-4
    4、(4分)把分解因式,正确的是( )
    A.B.C.D.
    5、(4分)如图 ,矩形 ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点 M,CN⊥AN于点 N.则 DM+CN 的值为(用含 a 的代数式表示)( )
    A.aB. aC.D.
    6、(4分)下列选择中,是直角三角形的三边长的是( )
    A.1,2,3B.2,5,3C.3,4,5D.4,5,6
    7、(4分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为( )
    A.6B.8C.10D.12
    8、(4分)下列各组数作为三角形的边长,其中不能构成直角三角形的是( )
    A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分) 已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_____.
    10、(4分)已知整数x、y满足+3=,则的值是______.
    11、(4分)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打___________折销售
    12、(4分)如图,在中,是边上的中线,是上一点,且连结,并延长交于点,则_________.
    13、(4分)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕,且,那么该矩形的周长为______cm.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,在中,AB=AC,∠ABC =,D是BC边上一点,以AD为边作,使AE=AD,+=180°.
    (1)直接写出∠ADE的度数(用含的式子表示);
    (2)以AB,AE为边作平行四边形ABFE,
    ①如图2,若点F恰好落在DE上,求证:BD=CD;
    ②如图3,若点F恰好落在BC上,求证:BD=CF.
    15、(8分)为了了解初中阶段女生身高情况,从某中学初二年级120名女生中随意抽出40名同龄女生的身高数据,经过分组整理后的频数分布表及频数分布直方图如图所示:
    结合以上信息,回答问题:
    (1)a=______,b=______,c=______.
    (2)请你补全频数分布直方图.
    (3)试估计该年级女同学中身高在160~165cm的同学约有多少人?
    16、(8分)在△ABC中,AH⊥BC于H,D、E、F分别是BC、CA、AB的中点.求证:DE=HF.
    17、(10分)甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘千克,在甲、乙采摘园所需总费用为、元,、与之间的函数关系的图像如图所示.
    (1)分别求出、与之间的函数关系式;
    (2)求出图中点、的坐标;
    (3)若该游客打算采摘圣女果,根据函数图像,直接写出该游客选择哪个采摘园更合算.
    18、(10分)(阅读理解)
    对于任意正实数、,∵,

    ∴,只有当时,等号成立.
    (数学认识)
    在(、均为正实数)中,若为定值,则,只有当时,有最小值.
    (解决问题)
    (1)若时,当_____________时,有最小值为_____________;
    (2)如图,已知点在反比例函数的图像上,点在反比例函数的图像上,轴,过点作轴于点,过点作轴于点.求四边形周长的最小值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若一元二次方程的两个实数根分别是、,则一次函数的图象一定不经过第____________象限.
    20、(4分)若,时,则的值是__________.
    21、(4分)如图,在中,,,,则__________.
    22、(4分)若一次函数y=kx﹣1的图象经过点(﹣2,1),则k的值为_____.
    23、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,求四边形AEDF的周长P.
    25、(10分)先化简,再求值:,其中x=﹣2+.
    26、(12分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
    (1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
    (2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    利用平行四边形的性质和勾股定理易求AC的长,进而可求出OB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BC=AD=6,OA=OC,
    ∵AC⊥BC,AB=10,
    ∴,
    ∴,
    ∴;
    故选:A.
    本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.
    2、B
    【解析】
    先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.
    【详解】
    解不等式2x>1-x,得:x>,
    解不等式x+21,
    则不等式组的解集为x>1,
    故选B.
    本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    3、D
    【解析】
    分析:根据二次根式的运算一一判断即可.
    详解:A. 故错误.
    B.故错误.
    C.,故错误.
    D.正确.
    故选D.
    点睛:考查二次根式的运算,根据运算法则进行运算即可.
    4、A
    【解析】
    由提公因式法,提出公因式a,即可得到答案.
    【详解】
    解:,
    故选择:A.
    本题考查了提公因式法,解题的关键是正确找出公因式.
    5、C
    【解析】
    根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cs45°= ,所以DM+CN=CDcs45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.
    【详解】
    ∵AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,
    ∴∠ADM=∠MDC=∠NCD=45°,
    ∴=CD,
    在矩形ABCD中,AB=CD=a,
    ∴DM+CN=acs45°=a.
    故选C.
    此题考查矩形的性质,解直角三角形,解题关键在于得到cs45°=
    6、C
    【解析】
    根据勾股定理的逆定理,逐一判断选项,即可得到答案.
    【详解】
    ∵12+22≠32,
    ∴1,2,3不是直角三角形的三边长,
    ∴A不符合题意,
    ∵22+32≠52,
    ∴2,5,3不是直角三角形的三边长,
    ∴B不符合题意,
    ∵32+42=52,
    ∴3,4,5是直角三角形的三边长,
    ∴C符合题意,
    ∵42+52≠62,
    ∴4,5,6不是直角三角形的三边长,
    ∴D不符合题意.
    故选C.
    本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.
    7、C
    【解析】
    此题涉及的知识点是旋转的性质,由旋转的性质,再根据∠BAC=30°,旋转60°,可得到∠BAC1=90°,结合勾股定理即可求解.
    【详解】
    解:∵△ABC绕点A逆时针旋转60°得到△AB1C1,
    ∴∠BAC1=∠BAC+∠CAC1=30°+60°=90°,
    AC1=AC=6,
    在RtBAC1中,∠BAC=90°,AB=8,AC1=6,
    ∴,
    故本题选择C.
    此题重点考查学生对于旋转的性质的理解,也考查了解直角三角形,等腰三角形的性质和含30度角的直角三角形的性质,熟练掌握以上知识点是解题的关键.
    8、D
    【解析】
    试题分析:A、∵,∴能构成直角三角形;B、,∴能构成直角三角形;C、,∴能构成直角三角形; D、∵,∴不能构成直角三角形.故选D.
    考点:勾股数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3或7
    【解析】
    分两种情况:
    (1)当AE交BC于点E时;
    在平行四边形ABCD中,则AD∥BC,DC=AB,AD=BC
    ∴∠AEB=∠EAD,
    ∵∠DAB的平分线交BC于E,
    ∴∠AEB=∠BAE,
    ∴∠AEB=∠BAE,∴AB=BE,
    设AD=x,z则BE=x-2=5
    ∴AD=5+2=7cm,
    (2) 当AE交BC于点E,交CD于点F
    ∵ABCD为平行四边形,
    ∴AB=DC=5cm,AD=BC,AD∥BC.
    ∴∠E=∠EAD,
    又∵BE平分∠BAD,
    ∴∠EAD=∠EAB,
    ∴∠EAB=∠E,
    ∴BC+CE=AB=5,
    ∴AD=BC=5−2=3(cm).故答案为3或7
    点睛:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,关键是要分两种情况讨论解答.
    10、6或2或2
    【解析】
    由+3==6,且x、y均为整数,可得=,3=0或=3,3=3或=0,3=,分别求出x、y的值,进而求出.
    【详解】
    ∵+3==6,
    又x、y均为整数,
    ∴=,3=0或=3,3=3或=0,3=,
    ∴x=72,y=0或x=18,y=2或x=0,y=8,
    ∴=6或2或2.
    故答案为:6或2或2.
    本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.
    11、8
    【解析】
    设该文具盒实际价格可打x折销售,根据利润率不低于20%列不等式进行求解即可得.
    【详解】
    设该文具盒实际价格可打x折销售,由题意得:
    6×-4≥4×20%,
    解得:x≥8,
    故答案为8.
    本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.
    12、1:8.
    【解析】
    先过点D作GD∥EC交AB于G,由平行线分线段成比例可得BG=GE,再根据GD∥EC,得出AE=,最后根据AE:EB=:2EG,即可得出答案.
    【详解】
    过点D作GD∥EC交AB于G,
    ∵AD是BC边上中线,
    ∴,即BG=GE,
    又∵GD∥EC,
    ∴,
    ∴AE=,
    ∴AE:EB=:2EG=1:8.
    故答案为:1:8.
    本题主要考查了平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是求出AE、EB、EG之间的关系.
    13、72
    【解析】
    根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.
    【详解】
    解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,
    ∵△ADE沿AE对折,点D的对称点F恰好落在BC上,
    ∴∠AFE=∠D=90°,AD=AF,
    ∵∠EFC+∠AFB=180°-90°=90°,
    ∠BAF+∠AFB=90°,
    ∴∠BAF=∠EFC,
    ∵,
    ∴设CE=3k,CF=4k,
    ∴,
    ∵∠BAF=∠EFC,且∠B=∠C=90°
    ∴△ABF∽△FCE,
    ∴,即,
    ∴BF=6k,
    ∴BC=BF+CF=10k=AD,
    ∵AE2=AD2+DE2,
    ∴500=100k2+25k2,
    ∴k=2
    ∴AB=CD =16cm,BC=AD=20cm,
    ∴四边形ABCD的周长=72cm
    故答案为:72.
    本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)证明见解析.
    【解析】
    试题分析:(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°-2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;
    (2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;
    ②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.
    试题解析:(1)∠ADE =.
    (2)①证明:∵四边形ABFE是平行四边形,
    ∴AB∥EF.
    ∴.
    由(1)知,∠ADE =,
    ∴.
    ∴AD⊥BC.
    ∵AB=AC,
    ∴BD=CD.
    ②证明:
    ∵AB=AC,∠ABC =,
    ∴.
    ∵四边形ABFE是平行四边形,
    ∴AE∥BF,AE=BF.
    ∴.
    由(1)知,,
    ∴.
    ∴.
    ∴AD=CD.
    ∵AD=AE=BF,
    ∴BF=CD.
    ∴BD=CF.
    考点:1.平行四边形的判定与性质;2.等腰三角形的性质.
    15、(1)6,12 ,0.30;(2)见解析;(3)36
    【解析】
    (1)根据频率分布表中的各个数据之间的关系,或者,调查总人数乘以本组的所占比可以求出a;从40人中减去其它各组人数即可,12占40 的比就是C,
    (2)根据缺少的两组的数据画出直方图中对应直条,
    (3)用样本估计总体,根据该年级的总人数乘以身高在160~165cm的同学所占比.
    【详解】
    解:(1)6 12 0.30
    40×0.15=6人,a=6,
    b=40-6-2-14-6=12,
    12÷40=0.30,即c=0.30,
    答:a=6,b=12,c=0.30,
    (2)补全频率分布直方图如图所示:
    (3)120×0.30=36人,
    答:该年级女同学中身高在160~165cm的同学约有36人.
    本题考查频率分布直方图和频率分布表所反映数据的变化趋势,理解表格中各个数据之间的关系是解决问题的关键.
    16、证明见解析.
    【解析】
    分析:根据题意知EH是直角△ABH斜边上的中线,DE是△ABC的中位线,所以由相关的定理进行证明.
    详解:∵D、E分别是BC、CA的中点,∴DE=AB.
    又∵点F是AB的中点,AH⊥BC,∴FH=AB,∴DE=HF.
    点睛:本题考查了三角形中位线定理、直角三角形斜边上的中线.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.
    17、(1)与之间的函数关系式为;与之间的函数关系式为;(2);(3)甲
    【解析】
    (1)根据单价=总价÷数量,即可求出甲、乙两采摘园优惠前的草莓销售价格;函数关系式=60+单价×数量;与之间的函数关系式结合图像,利用待定系数法即可解决;
    (2)分两段,求函数交点即可解决;
    (3)当时,根据y1和 y2函数图象分析,图象在下方的价格低.
    【详解】
    (1)由图得单价为(元),
    据题意,得
    当时,,
    当时由题意可设,将和分别代入中,
    得,解得,
    故与之间的函数关系式为
    (2)联立,,得,故.
    联立,,得
    解得,故.
    (3)当时, y1的函数图象在 y2函数图象下方,故甲采摘园更合算.
    本题考查了一次函数的应用,注意分段函数要分别讨论;熟练掌握待定系数法以及根据图象分析函数大小是解答本题的关键.
    18、(1)1,1;(1)2.
    【解析】
    (1)根据题意,利用完全平方式即可求解;
    (1)根据反比例函数的解析式,设出A和B的坐标,然后表示出周长,再根据上面的知识求解即可;
    【详解】
    解:(1)1,1.
    (1)解:设,则,
    ∴四边形周长

    ∴四边形周长的最小值为2.
    此题属于反比例函数综合题,考查了几何不等式的应用,理解在 (a, b均为正实数)中,若ab为定值k,则只有当a=b时,a+b有最小值是关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、四
    【解析】
    根据根与系数的关系可得出a+b=1、ab=4,再结合一次函数图象与系数的关系,即可得出一次函数y=abx+a+b的图象经过的象限,此题得解.
    【详解】
    解:∵一元二次方程的两个实数根分别是a、b,
    ∴a+b=1,ab=4,
    ∴一次函数的解析式为y=4x+1.
    ∵4>0,1>0,
    ∴一次函数y=abx+a+b的图象经过第一、二、三象限,不经过第四象限,
    故答案为:四.
    本题考查了根与系数的关系以及一次函数图象与系数的关系,利用根与系数的关系结合一次函数图象与系数的关系,找出一次函数图象经过的象限是解题的关键.
    20、1
    【解析】
    利用平方差公式求解即可求得答案.
    【详解】
    解:当,时,

    故答案为:1.
    此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.
    21、30.
    【解析】
    利用勾股逆定理推出∠C=90°,再利用三角形的面积公式,进行计算即可.
    【详解】
    解:∵,,
    又∵

    ∴∠C=90°

    故答案为:30
    本题考查了勾股逆定理以及三角形的面积公式,掌握勾股定理是解题的关键.
    22、-1
    【解析】
    一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值.
    【详解】
    解:一次函数y=kx﹣1的图象经过点(﹣2,1),
    即当x=﹣2时,y=1,可得:1=-2k﹣1,
    解得:k=﹣1.
    则k的值为﹣1.
    本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数.
    23、
    【解析】
    根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度
    【详解】
    ∵四边形ABCD是菱形,
    ∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,
    ∴BC==5cm,
    ∴S菱形ABCD==×6×8=24cm2,
    ∵S菱形ABCD=BC×AE,
    ∴BC×AE=24,
    ∴AE=cm.
    故答案为: cm.
    此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
    二、解答题(本大题共3个小题,共30分)
    24、1
    【解析】
    根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.
    【详解】
    解:在Rt△ABC中,
    ∵AC=6,AB=8,
    ∴BC==10,
    ∵E是BC的中点,
    ∴AE=BE=5,
    ∴∠BAE=∠B,
    ∵∠FDA=∠B,
    ∴∠FDA=∠BAE,
    ∴DF∥AE,
    ∵D、E分别是AB、BC的中点,
    ∴DE∥AC,DE=AC=3,
    ∴四边形AEDF是平行四边形
    ∴四边形AEDF的周长=2×(3+5)=1.
    本题考查了三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.
    25、,
    【解析】
    原式括号中两项通分并利用同分母分式的加减法则计算,再把除法转化成乘法约分即可得到结果.
    【详解】
    解:原式=÷


    =
    =﹣,
    当x=﹣2+时,
    原式=﹣=﹣=﹣.
    26、(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利: 254元.
    【解析】
    试题分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;
    (2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果乙店盈利×x;列出函数解析式利用函数性质求得答案即可.
    解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;
    (2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,
    乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.
    ∵9×(10﹣x)+13x≥100,
    ∴x≥2,
    经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+1.
    ∵﹣2<0,
    ∴w随x增大而减小,
    ∴当x=3时,w值最大.
    甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+1=254(元).
    题号





    总分
    得分
    A种水果/箱
    B种水果/箱
    甲店
    11元
    17元
    乙店
    9元
    13元

    相关试卷

    江苏省镇江市丹阳实验中学2024-2025学年数学九上开学经典模拟试题【含答案】:

    这是一份江苏省镇江市丹阳实验中学2024-2025学年数学九上开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。

    江苏省镇江市丹徒区2025届九年级数学第一学期开学联考试题【含答案】:

    这是一份江苏省镇江市丹徒区2025届九年级数学第一学期开学联考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省镇江市镇江中学数学九年级第一学期开学联考模拟试题【含答案】:

    这是一份2025届江苏省镇江市镇江中学数学九年级第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map