搜索
    上传资料 赚现金
    英语朗读宝

    江苏苏州高新区2025届数学九上开学教学质量检测模拟试题【含答案】

    江苏苏州高新区2025届数学九上开学教学质量检测模拟试题【含答案】第1页
    江苏苏州高新区2025届数学九上开学教学质量检测模拟试题【含答案】第2页
    江苏苏州高新区2025届数学九上开学教学质量检测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏苏州高新区2025届数学九上开学教学质量检测模拟试题【含答案】

    展开

    这是一份江苏苏州高新区2025届数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知点P(m﹣3,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是( )
    A.B.
    C.D.
    2、(4分)如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
    A.B.
    C.D.
    3、(4分)如图,要使□ABCD成为矩形,需添加的条件是()
    A.AB=BCB.∠ABC=90°C.AC⊥BDD.∠1=∠2
    4、(4分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为
    A.(1.4,-1)B.(1.5,2)C.(1.6,1)D.(2.4,1)
    5、(4分)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有( )
    A.B.C.D.
    6、(4分)在平面直角坐标系中,函数的图象经过( )
    A.第一、二、三象限B.第一、二、四象限
    C.第一、三、四象限D.第二、三、四象限
    7、(4分)如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么的值为( )
    A.13B.19C.25D.169
    8、(4分)将直线向下平移个单位后所得直线的解析式为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在一个长6m、宽3m、高2m的房间里放进一根竹竿,竹竿最长可以是________.
    10、(4分)如图,直线与轴、轴分别交于,两点,是的中点,是上一点,四边形是菱形,则的面积为______.
    11、(4分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.
    12、(4分)当时,__.
    13、(4分)若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,1),B(-1,3),C(0,1).
    (1)将△ABC以点C为旋转中心旋转180°,画出旋转后的△A1B1C;
    (2)平移△ABC,若点A的对应点A2的坐标为(-5,-3),画出平移后的△A2B2C2;
    (3)若△A2B2C2和△A1B1C关于点P中心对称,请直接写出旋转中心P的坐标.
    15、(8分)某商场计划购进甲、乙两种商品共件,这两种商品的进价、售价如表所示:
    设购进甲种商品(,且为整数)件,售完此两种商品总利润为元.
    (1)该商场计划最多投入元用于购进这两种商品共件,求至少购进甲种商品多少件?
    (2)求与的函数关系式;
    (3)若售完这些商品,商场可获得的最大利润是__________元.
    16、(8分)问题发现:
    (1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为 .
    问题探究:
    (2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD=CD,连接DQ,求DQ的最小值;
    问题解决:
    (3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.
    17、(10分)某水果专卖店销售樱桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每千克降低1元,则平均每天的销售可增加10千克,请回答:
    (1)写出售价为50元时,每天能卖樱桃_____千克,每天获得利润_____元.
    (2)若该专卖店销售这种樱桃要想平均每天获利2240元,每千克樱桃应降价多少元?
    (3)若该专卖店销售这种樱桃要想平均每天获利最大,每千克樱桃应售价多少元?
    18、(10分)如图,E、F、 G、H分别为四边形ABCD四边之中点.
    (1)求证:四边形EFGH为平行四边形;
    (2)当AC、BD满足______时,四边形EFGH为矩形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在平面直角坐标系中,点P(﹣,﹣1)到原点的距离为_____.
    20、(4分)你喜欢足球吗?下面是对耒阳市某校八年级学生的调查结果:
    则男同学中喜欢足球的人数占全体同学的百分比是________.
    21、(4分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为____.
    22、(4分)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.
    23、(4分)比较大小:__________.(用不等号连接)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平面直角坐标系中,直线经过、两点.
    (1)求直线所对应的函数解析式:
    (2)若点在直线上,求的值.
    25、(10分)如图,A,B两点的坐标分别为(3,0)、(0,2),将线段AB平移至A1B1,且A1(5,b)、B1(a,3).
    (1)将线段A1B1绕点A1顺时针旋转60°得线段A1B2,连接B1B2得△A1B1B2,判断△A1B1B2的形状,并说明理由;
    (2)求线段AB平移到A1B1的距离是多少?
    26、(12分)已知关于x的方程x1﹣(1k+1)x+k1﹣1=0有两个实数根x1,x1.
    (1)求实数k的取值范围;
    (1)若方程的两个实数根x1,x1满足,求k的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.
    【详解】
    解:∵点P(m﹣3,m﹣1)在第二象限,
    ∴,
    解得:1<m<3,
    故选:D.
    本题考查不等式组的解法,在数轴上表示不等式组的解集等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.
    2、C
    【解析】
    本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.
    【详解】
    最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.
    故本题选C.
    本题考查动点问题的函数图象问题,首先看清横轴和纵轴表示的量,然后根据实际情况:时间t和运动的路程s之间的关系采用排除法求解即可.
    3、B
    【解析】
    根据一个角是90度的平行四边形是矩形进行选择即可.
    【详解】
    解:A、是邻边相等,可判定平行四边形ABCD是菱形;
    B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
    C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
    D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
    故选:B.
    本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
    4、C
    【解析】
    试题分析:∵A点坐标为:(2,4),A1(﹣2,1),
    ∴平移和变化规律是:横坐标减4,纵坐标减1.
    ∴点P(2.4,2)平移后的对应点P1为:(-1.6,-1).
    ∵点P1绕点O逆时针旋转180°,得到对应点P2,
    ∴点P1和点P2关于坐标原点对称.
    ∴根据关于原点对称的点的坐标是横、纵坐标都互为相反数的性质,得P2点的坐标为:(1.6,1).
    故选C.
    5、D
    【解析】
    由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.
    【详解】
    ∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,
    ∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO
    ∵∠DOE=90°,
    ∴∠COD+∠COE=90°,且∠AOD+∠COD=90°
    ∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,
    ∴△ADO≌△CEO(ASA)
    ∴AD=CE,OD=OE,故④正确,
    同理可得:△CDO≌△BEO
    ∴CD=BE,
    ∴AC=AD+CD=AD+BE,故①正确,
    在Rt△CDE中,CD2+CE2=DE2,
    ∴AD2+BE2=DE2,故②正确,
    ∵△ADO≌△CEO,△CDO≌△BEO
    ∴S△ADO=S△CEO,S△CDO=S△BEO,
    ∴△ABC的面积等于四边形CDOE面积的2倍;故③正确,
    综上所述:正确的结论有①②③④,
    故选D.
    本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.
    6、D
    【解析】
    由k、b的正负,利用一次函数图象与系数的关系即可得出函数y=-2x-3的图象经过第二、三、四象限,此题得解.
    【详解】
    ∵k=-2<0,b=-3<0,
    ∴函数y=-2x-3的图象经过第二、三、四象限.
    故选D.
    本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.
    7、C
    【解析】
    试题分析:根据题意得:=13,4×ab=13﹣1=12,即2ab=12,则==13+12=25,故选C.
    考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.
    8、D
    【解析】
    只向下平移,让比例系数不变,常数项减去平移的单位即可.
    【详解】
    直线向下平移个单位后所得直线的解析式为
    故选:D
    本题考查了一次函数图象与几何变换,解题的关键是熟记函数平移的规则“上加下减”.本题属于基础题,难度不大,解决该题型题目时,根据平移的规则求出平移后的函数解析式是关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    【分析】根据题意画出图形,首先利用勾股定理计算出BC的长,再利用勾股定理计算出AB的长即可.
    【详解】如图,∵侧面对角线BC2=32+22=13,
    ∴CB=m,
    ∵AC=6m,
    ∴AB==1m,
    ∴竹竿最大长度为1m,
    故答案为:1.
    【点睛】本题考查了勾股定理的应用,解题的关键是画出符合题意的图形,利用数形结合的思想以及勾股定理的知识解决问题.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    10、8.
    【解析】
    已知直线y=x+8与x轴、y轴分别交于A,B两点, 可求得点A、B的坐标分别为:(8 ,0)、(0,8);又因 C是OB的中点, 可得点C(0,4),所以菱形的边长为4,根据菱形的性质可得DE=4=DC,设点D(m,m+8),则点E(m,m+4),由两点间的距离公式可得CD2=m2+(m+8﹣4)2=16, 解方程求得m=2, 即可得点E(2,2), 再根据S△OAE= ×OA×yE即可求得的面积.
    【详解】
    ∵直线y=x+8与x轴、y轴分别交于A,B两点,
    ∴当x=0时,y=8;当y=0时,x=8,
    ∴点A、B的坐标分别为:(8 ,0)、(0,8),
    ∵C是OB的中点,
    ∴点C(0,4),
    ∴菱形的边长为4,则DE=4=DC,
    设点D(m,m+8),则点E(m,m+4),
    则CD2=m2+(m+8﹣4)2=16,
    解得:m=2,
    故点E(2,2),
    S△OAE= ×OA×yE=×8×2=8 ,
    故答案为8.
    本题是一次函数与几何图形的综合题,正确求得点E的坐标是解决问题的关键.
    11、x≤1.
    【解析】
    将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;
    【详解】
    解:点P(m,3)代入y=x+2,
    ∴m=1,
    ∴P(1,3),
    结合图象可知x+2≤ax+c的解为x≤1,
    故答案为:x≤1.
    本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.
    12、
    【解析】
    将x的值代入x2-2x+2028=(x-1)2+2027,根据二次根式的运算法则计算可得.
    【详解】
    解:当x=1-时,
    x2-2x+2028=(x-1)2+2027
    =(1--1)2+2027
    =(-)2+2027,
    =3+2027
    =1,
    故答案为:1.
    本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.
    13、6
    【解析】
    根据数据a1、a2、a3的平均数是3,数据2a1、2a2、2a3的平均数与数据中的变化规律相同,即可得到答案.
    【详解】
    解:∵数据a1、a2、a3的平均数为3,
    ∴数据2a1、2a2、2a3的平均数是6.
    故答案为:6.
    此题主要考查了平均数,关键是掌握平均数与数据的变化之间的关系.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析;(3)(-1,-1)
    【解析】
    (1)分别将A,B绕C点旋转180°,得到A1,B1,再顺次连接即可得△A1B1C;
    (2)由A(-3,1)到A2(-5,-3)是向左平移2个单位,再向下平移4个单位,将B,C以同样的方式平移得到B2,C2,再顺次连接即可得△A2B2C2;
    (3)连接B1B2,CC2,交点即为旋转中心P.
    【详解】
    (1)如图所示,△A1B1C即为所求;
    (2)如图所示,△A2B2C2即为所求;
    (3)旋转中心P的坐标为(-1,-1).
    本题考查网格作图,熟练掌握点的旋转与平移是解题的关键,寻找旋转中心的方法是连接旋转前后对应点,交点即为旋转中心.
    15、(1)50件;(2);(3)795
    【解析】
    (1)根据表格中的数据和题意列不等式,根据且x为整数即可求出x的取值范围得到答案;
    (2)根据题意和表格中的数据即可得到函数关系式;
    (3)根据(2)中的函数关系式和一次函数的性质即可求出答案.
    【详解】
    (1)由题意得15x+25(80-x),
    解得x,
    ∵,且为整数,
    ∴,且为整数,
    ∴至少购进甲种商品50件;
    (2)由题意得,
    ∴y与x的函数关系式是;
    (3)∵,,且为整数,
    ∴当x=1时,y有最大值,此时y最大值=795,
    故答案为:795.
    此题考查一元一次不等式的实际应用,一次函数的实际应用,一次函数的性质求函数的最大值,正确理解题意列不等式或函数解决问题是解题的关键.
    16、(1)4;(2)5;(3)600(+1).
    【解析】
    (1)如图①中,证明△EOB≌△FOC即可解决问题;
    (2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.
    (3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=(+1)BD,当BD最大时,AB+BC+BD的值最大.
    【详解】
    解:(1)如图①中,
    ∵四边形ABCD是正方形,
    ∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
    ∵∠EOF=90°,
    ∴∠EOF=∠BOC,
    ∴∠EOB=∠FOC,
    ∴△EOB≌△FOC(SAS),
    ∴S△EOB=S△OFC,
    ∴S四边形OEBF=S△OBC=•S正方形ABCD=4,
    故答案为:4;
    (2)如图②中,连接BD,取AC的中点O,连接OB,OD.
    ∵∠ABD=∠ADC=90°,AO=OC,
    ∴OA=OC=OB=OD,
    ∴A,B,C,D四点共圆,
    ∴∠DBC=∠DAC,
    ∵DA=DC,∠ADC=90°,
    ∴∠DAC=∠DCA=45°,
    ∴∠DBQ=45°,
    根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=BQ=5.
    (3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,
    ∵∠ABC+∠ADC=180°,
    ∴∠BCD+∠BAD=∠EAD+BAD=180°,
    ∴B,A,E三点共线,
    ∵DE=DB,∠EDB=90°,
    ∴BE=BD,
    ∴AB+BC=AB+AE=BE=BD,
    ∴BC+BC+BD=(+1)BD,
    ∴当BD最大时,AB+BC+BD的值最大,
    ∵A,B,C,D四点共圆,
    ∴当BD为直径时,BD的值最大,
    ∵∠ADC=90°,
    ∴AC是直径,
    ∴BD=AC时,AB+BC+BD的值最大,最大值=600(+1).
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.
    17、200 2000(2)4元或6元(3)当销售单价为55元时,可获得销售利润最大
    【解析】
    试题分析:(1)根据每天能卖出樱桃=100+10×(60﹣10)计算即可得到每天卖的樱桃,根据利润=单价×数量计算出每天获得利润;
    (2)设每千克樱桃应降价x元,根据每千克的利润×数量=2240元,列方程求解;
    (3)设每千克樱桃应降价x元,根据利润y=每千克的利润×数量,列出函数关系式,利用配方法化成顶点式即可求出答案.
    解:(1)售价为50元时,每天能卖出樱桃100+10×(60﹣10)=200千克,每天获得利润(50﹣40)×200=2000元,
    故答案为200、2000;
    (2)设每千克樱桃应降价x元,根据题意得:(60﹣40﹣x)(100+10x)=2240,
    整理得:x2﹣10x+24=0,
    x=4或x=6,
    答:每千克核桃应降价4元或6元;
    (3)设降价为x元,利润y=(60﹣40﹣x)(100+10x)
    =﹣10x2+100x+2000
    =﹣10x2+100x+2000
    =﹣10(x﹣5)2+2250,
    ∴当x=5时,y的值最大.
    60-5=55元.
    答:当销售单价为55元时,可获得销售利润最大.
    点睛:本题考查了利润的计算方法,一元二次方程的实际应用,二次函数的实际应用,利用基本数量关系利润=每千克的利润×数量,列出方程和函数关系式是解答本题的关键.
    18、(1)见解析;(2)AC⊥BD
    【解析】
    (1)连接BD,根据中位线的性质可得EH∥BD,EH=,FG∥BD,FG=,从而得出EH∥FG,EH= FG,然后根据平行四边形的判定定理即可证出结论;
    (2)当AC⊥BD时,连接AC,根据中位线的性质可得EF∥AC,从而得出EF⊥BD,然后由(1)的结论可证出EF⊥EH,最后根据有一个角是直角的平行四边形是矩形即可证出结论.
    【详解】
    (1)证明:连接BD
    ∵E、F、 G、H分别为四边形ABCD四边的中点
    ∴EH是△ABD的中位线,FG是△CBD的中位线
    ∴EH∥BD,EH=,FG∥BD,FG=
    ∴EH∥FG,EH= FG
    ∴四边形EFGH为平行四边形;
    (2)当AC⊥BD时,四边形EFGH为矩形,理由如下
    连接AC,
    ∵E、F为BA和BC的中点
    ∴EF为△BAC的中位线
    ∴EF∥AC
    ∵AC⊥BD
    ∴EF⊥BD
    ∵EH∥BD
    ∴EF⊥EH
    ∴∠FEH=90°
    ∵四边形EFGH为平行四边形
    ∴四边形EFGH为矩形
    故答案为:AC⊥BD.
    此题考查的是中位线的性质、平行四边形的判定和矩形的判定,掌握中位线的性质、平行四边形的判定定理和矩形的定义是解决此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    ∵点P的坐标为,
    ∴OP=,即点P到原点的距离为2.
    故答案为2.
    点睛:平面直角坐标系中,点P到原点的距离=.
    20、50
    【解析】
    先计算调查的男同学喜欢与不喜欢的全体人数,再用男同学中喜欢的人数比上全体人数乘以100%即可得出答案.
    【详解】
    调查的全体人数为75+15+36+24=150人,
    所以男同学中喜欢足球的人数占全体同学的百分比=
    故答案为50.
    本题考查的是简单的统计,能够计算出调查的全体人数是解题的关键.
    21、1
    【解析】
    先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.
    【详解】
    解:∵四边形ABCD是矩形,AD=8,
    ∴BC=8,
    ∵△AEF是△AEB翻折而成,
    ∴BE=EF=3,AB=AF,△CEF是直角三角形,
    ∴CE=8-3=5,
    在Rt△CEF中,
    设AB=x,
    在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,
    解得x=1,则AB=1.
    故答案为:1.
    本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
    22、1
    【解析】
    解:应分(70-42)÷4=7,
    ∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,
    ∴应分1组.
    故答案为:1.
    23、0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△

    相关试卷

    江苏省苏州市星湾中学2024年九上数学开学教学质量检测模拟试题【含答案】:

    这是一份江苏省苏州市星湾中学2024年九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省苏州市高新区2024-2025学年数学九上开学学业水平测试模拟试题【含答案】:

    这是一份江苏省苏州市高新区2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省苏州高新区六校联考2024-2025学年九上数学开学复习检测模拟试题【含答案】:

    这是一份江苏省苏州高新区六校联考2024-2025学年九上数学开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map