江西省赣州市名校2024年九年级数学第一学期开学监测试题【含答案】
展开
这是一份江西省赣州市名校2024年九年级数学第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某中学在“一元钱捐助”献爱心捐款活动中,六个年级捐款如下(单位:元):888, 868,688,886,868,668 那么这组数据的众数、中位数、平均数分别为( )
A.868,868,868B.868,868,811C.886,868,866D.868,886,811
2、(4分)如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC等于( )
A.8°B.9°C.10°D.11°
3、(4分)二次根式在实数范围内有意义,则的取值范围是( )
A.B.C.D.
4、(4分)如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:
对于甲、乙两人的作法,可判断( )
A.甲正确,乙错误B.甲错误,乙正确
C.甲、乙均正确D.甲、乙均错误
5、(4分)下面的图形中,既是中心对称又是轴对称的图形是( )
A.B.C.D.
6、(4分)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8,射击成绩稳定的是( )
A.甲B.乙C.甲、乙一样D.不能确定
7、(4分)某校举行课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.65m,其方差分别是S甲2=3.8,S乙2=3.4,则参赛学生身高比较整齐的班级是( )
A.甲班B.乙班C.同样整齐D.无法确定
8、(4分)如果一个多边形的内角和等于它的外角和,那么这个多边形是( )
A.六边形B.五边形C.四边形D.三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在等边三角形ABC中,AB=5,在AB边上有一点P,过点P作PM⊥BC,垂足为M,过点M作MN⊥AC,垂足为N,过点N作NQ⊥AB,垂足为Q.当PQ=1时,BP=_____.
10、(4分)数据15、19、15、18、21的中位数为_____.
11、(4分)将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为_____.
12、(4分)有一组数据如下:3、7、4、6、5,那么这组数据的方差是_____.
13、(4分)已知,则的值为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知△ABC的三条边长分别为2,5,6,在△ABC所在平面内画一条直线,将△ABC分成两个三角形,使其中一个三角形为等腰三角形.
(1)这样的直线最多可以画 条;
(2)请在三个备用图中分别画出符合条件的一条直线,要求每个图中得到的等腰三角形腰长不同,尺规作图,不写作法,保留作图痕迹.
15、(8分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
根据以上信息,请解答下面的问题;
(1)补全甲选手10次成绩频数分布图.
(2)a= ,b= ,c= .
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
16、(8分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(公里)与甲车行驶时间(小时)之间的函数关系如图,请根据所给图象关系解答下列问题:
(1)求甲、乙两车的行驶速度;
(2)求乙车出发1.5小时后,两车距离多少公里?
(3)求乙车出发多少小时后,两车相遇?
17、(10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?
18、(10分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,已知,,将矩形绕点逆时针方向放置得到矩形.
(1)当点恰好落在轴上时,如图1,求点的坐标.
(2)连结,当点恰好落在对角线上时,如图2,连结,.
①求证:.
②求点的坐标.
(3)在旋转过程中,点是直线与直线的交点,点是直线与直线的交点,若,请直接写出点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.
20、(4分)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=______.
21、(4分)如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.
22、(4分)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距__________m
23、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,点D、E、F是三边的中点,则△DEF的周长是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)关于x的一元二次方程有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
25、(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元
(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?
(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?
26、(12分)列方程解应用题
某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据众数的定义即可得出众数,根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的中位数,根据平均数公式即可得出平均数.
【详解】
解:由888, 868,688,886,868,668可知众数为:868
将888, 868,688,886,868,668进行排序668,688, 868,868,886,888,可知中位数是:
平均数为:
故答案为:868,868,811
故选:B
本题考查了众数、平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
2、A
【解析】
连接OA,根据三角形内角和定理求出∠ABC+∠ACB,根据线段垂直平分线的性质、等腰三角形的性质得到∠OAB=∠OBA,∠OAC=∠OCA,根据三角形内角和定理计算即可.
【详解】
解:连接OA,
∵∠BAC=82°,
∴∠ABC+∠ACB=180°﹣82°=98°,
∵AB、AC的垂直平分线交于点O,
∴OB=OA,OC=OA,
∴∠OAB=∠OBA,∠OAC=∠OCA,
∴∠OBC+∠OCB=98°﹣(∠OBA+∠OCA)=16°,
∴∠OBC=8°,
故选:A.
本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.
3、B
【解析】
根据二次根式的被开方数是非负数解题.
【详解】
解:依题意,得
a-1≥0,
解得,a≥1.
故选:B.
考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
4、C
【解析】
由甲乙的做法,根据菱形的判定方法可知正误.
【详解】
解:甲的作法如图所示,
四边形ABCD是平行四边形
又垂直平分AC
又
四边形AFCE为平行四边形
又
四边形AFCE为菱形
所以甲的作法正确.
乙的作法如图所示
AE平分
同理可得
又
四边形ABEF为平行四边形
四边形ABEF为菱形
所以乙的作法正确
故选:C
本题考查了菱形的判定,熟练运用菱形的判定进行证明是解题的关键.
5、D
【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.
【详解】
A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、不是轴对称图形,是中心对称图形.故错误;
D、既是轴对称图形,也是中心对称图形.故正确.
故选D.
本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、A
【解析】
根据方差的概念判断即可.
【详解】
在平均数相同的情况下,方差小的更稳定,
故选A.
本题考查方差的意义,关键在于牢记方差的概念.
7、B
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定
【详解】
S甲2=3.8,S乙2=3.4,
∴S甲2>S乙2,
∴参赛学生身高比较整齐的班级是乙班,
故选:B.
此题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
8、C
【解析】
根据多边形内角和公式:(n-2)×180°和任意多边形外角和为定值360 °列方程求解即可.
【详解】
解:设多边形的边数为n,根据题意列方程得,
(n﹣2)•180°=360°,
n﹣2=2,
n=1.
故选:C.
本题考查的知识点多边形的内角和与外交和,熟记多边形内角和公式是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或
【解析】
分析:由题意可知P点可能靠近B点,也可能靠近A点,所以需要分为两种情况:设BM=x,AQ=y,
若P靠近B点,由题意可得∠BPM=30°,根据直角三角形的性质可得BP=2BM=2x,AN=2y,CM=2CN=10-4y,再根据AB=BC=5,PQ=1,列方程组,解出x、y即可求得BP的长;
若点P靠近A点,同理可得,求解即可.
详解:设BM=x,AQ=y,
若P靠近B点,如图
∵等边△ABC,
∴AB=BC=AC=5,∠A=∠B=∠C=60°
∵PM⊥BC
∴∠BMP=90°
则Rt△BMP中,∠BPM=30°,
∴BM=BP
则BP=2x
同理AN=2y,
则CN=5-2y
在Rt△BCM中,CM=2CN=10-4y
∵AB=BC=5,PQ=1
∴
解得
∴BP=2x=;
若点P靠近A点,如图
由上面的解答可得BP=2x,AQ=y,CM=10-4y
∴
解得
∴BP=2x=
综上可得BP的长为:或.
点睛:此题主要考查了等边三角形的性质和30°角的直角三角形的性质,关键是正确画图,分两种情况讨论,注意掌握和明确方程思想和数形结合思想在解题中的作用.
10、1
【解析】
将这五个数排序后,可知第3位的数是1,因此中位数是1.
【详解】
将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,
故答案为:1.
考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.
11、y=2x
【解析】
根据上加下减,左加右减的法则可得出答案
【详解】
一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度变为:
y=2x﹣3+3=2x
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
12、1
【解析】
试题分析:平均数为:(3+7+4+6+5)÷5=5,
S1=×[(3﹣5)1+(7﹣5)1+(4﹣5)1+(6﹣5)1+(5﹣5)1]
=×(4+4+1+1+0)
=1.
故答案为1.
点睛:本题考查方差的定义:一般地,设n个数据x1,x1,…xn的平均数为,则方差S1=[(x1-)1+(x1-)1+…+(xn-)1],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
13、
【解析】
根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.
【详解】
由题意得,
解得:x=4,
所以y=3,
所以=,
故答案为:.
本题考查了二次根式有意义的条件,熟练掌握是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)7;(2)见解析
【解析】
(1)根据等腰三角形的性质分别利用AB.、BC、AC为底以及AB、BC、AC为腰得出符合题意的图形即可;(2)根据等腰三角形和垂直平分线的性质作图即可.
【详解】
解:(1)以点A为圆心,AB为半径做弧,交AC于点M1;以点C为圆心,BC为半径做弧,交AC于点M2;以点B为圆心,BC为半径做弧,交AC于点M3;交AB于点M4;作AB的垂直平分线,交AC于点M5;作AC的垂直平分线,交AB于点M6;作BC的垂直平分线,交AC于点M7;共7条
故答案为:7
(2)如图即为所求.
说明:如上7种作法均可.
此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.
15、(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
【解析】
(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;
(2)根据平均数公式、中位数的求法和方差公式计算得到答案;
(3)从平均数和方差进行分析即可得到答案.
【详解】
解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,
补全图形如下:
(2)a==8(环),
c=×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,
b==7.5,
故答案为:8、1.2、7.5;
(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.
16、(1)甲车的行驶速度 60(km/h),乙车的行驶速度80(km/h);(2)两车距离170公里;(3)乙车出发小时后,两车相遇.
【解析】
(1)根据速度=路程÷时间分别求出甲、乙两车的速度即可;
(2)根据时间=路程÷速度即可求解;
(3)根据时间=路程÷速度和即可求解.
【详解】
(1)甲车的行驶速度:=60(km/h)
乙车的行驶速度:=80(km/h)
(2)乙车出发1.5小时后,离C地距离:200-80×1.5=80(km),
甲离C地距离:240-60×(1+1.5)=90(km),
80+90=170(km)
乙车出发1.5小时后,两车距离170公里。
(3)设乙车出发x小时后,两车相遇,
则80x+60(x+1)=200+240,
解得:x=小时,
所以,乙车出发小时后,两车相遇.
本题考查了一次函数的应用,根据函数图象逐一分析是解题的关键.
17、3.
【解析】
试题分析:设降价x元,表示出售价和销售量,根据题意列出方程求解即可.
试题解析:降价x元,则售价为(60﹣x)元,销售量为(300+30x)件,根据题意得,(60﹣x﹣40)(300+30x)=6080,解得x=3或x=4,又顾客得实惠,故取x=4,应定价为3元,
答:应将销售单价定位3元.
考点:3.一元二次方程的应用;3.销售问题.
18、(1)点;(2)①见解析;②点;(3)点,,,.
【解析】
(1)由旋转的性质可得,,,由勾股定理可求的长,即可求点坐标;
(2)①连接交于点,由旋转的性质可得,,,,,,可得,可证点,点,点,点四点共圆,可得,,,由“”可证;
②通过证明点,点关于对称,可求点坐标;
(3)分两种情况讨论,由面积法可求,由勾股定理可求的值,即可求点坐标.
【详解】
解:(1)四边形是矩形
,,
将矩形绕点逆时针方向旋转得到矩形.
,,
,
点
(2)①如图,连接交于点,
四边形是矩形
,
,且
,
将矩形绕点逆时针方向旋转得到矩形.
,,,,,,
,
点,点,点,点四点共圆,
,,,
,
,
,
,
,且,
,
②
,
,
,
点,点,点共线
,
点,点关于对称,且
点
(3)如图,当点在点右侧,连接,过点作于,
,
设,则,,
,,
四边形是矩形,
,
,
,
,
,
(负值舍去),
,
,
点,,
如图,若点在点左侧,连接,过点作于,
,
设,则,,
,,
四边形是矩形,
,
,
,
,
,
,
,
,
点,,
综上所述:点,,,
本题是四边形综合题,考查了矩形的性质,旋转的性质,全等三角形的判定和性质,勾股定理等知识,还考查了分类讨论思想的应用,考查了数形结合思想的应用,添加恰当辅助线是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、10
【解析】
根据翻折的特点得到,.设,则.在中,,即,解出x,再根据三角形的面积进行求解.
【详解】
∵翻折,∴,,
又∵,
∴,
∴.设,则.
在中,,即,
解得,
∴,
∴.
此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.
20、2016
【解析】
由题意可得,
,
,
∵,为方程的个根,
∴,
,
∴.
21、8
【解析】
先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.
【详解】
(),
由勾股定理得(),
则玻璃棒露在容器外的长度的最小值是().
故答案为.
考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.
22、
【解析】
两人从同一地点同时出发,一人以30m/min的速度向北直行
【详解】
解:设10min后,OA=30×10=300(m),
OB=30×10=300(m),
甲乙两人相距AB=(m).
故答案为:.
本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.
23、1
【解析】
先根据勾股定理求出BC,再根据三角形中位线定理求出△DEF的三边长,然后根据三角形的周长公式计算即可.
【详解】
解:在Rt△ABC中,∵∠C=90°,AC=6,AB=10,∴BC==8,
∵点D、E、F是三边的中点,∴DE=AC=3,DF=AB=5,EF=BC=4,
∴△DEF的周长=3+4+5=1.
故答案为:1.
本题考查的是勾股定理和三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(2) .
【解析】
(1)由题意,得;可再求m的取值范围;
(2)比如取m=1.
【详解】
解:(1)由题意,得.
解得.
(2)答案不唯一.如:
取m=1,此时方程为.
解得 .
本题考核知识点:一元二次方程根判别式.解题关键点:熟记一元二次方程根判别式的意义.
25、 (1)A型设备最多购买5台;(2)A型设备至少要购买4台.
【解析】
(1)设购买A型号的x台,购买B型号的为(10-x)台,根据购买节省能源的新设备的资金不超过110万元.可列出不等式求解.
(2)设购买A型号的a台,购买B型号的为(10-a)台,根据每月要求总产量不低于2040吨,可列不等式求解.
【详解】
(1)设购买A型号的x台,购买B型号的为(10﹣x)台,
则:12x+10(10﹣x)≤110,
解得:x≤5,
答:A型设备最多购买5台;
(2)设购买A型号的a台,购买B型号的为(10﹣a)台,
可得:240a+180(10﹣a)≥2040,
解得:a≥4,
∴A型设备至少要购买4台.
本题考查了一元一次不等式的应用,解题的关键是根据题意列出的一元一次不等式.
26、原计划每天加工20套.
【解析】
设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.
【详解】
解:设原计划每天加工x套,由题意得:
解得:x=20,
经检验:x=20是原方程的解.
答:原计划每天加工20套.
考点:分式方程的应用
题号
一
二
三
四
五
总分
得分
甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.
乙:分别作与的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.
选手
A平均数
中位数
众数
方差
甲
a
8
8
c
乙
7.5
b
6和9
2.65
相关试卷
这是一份江西省赣州市于都县2024年数学九年级第一学期开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份江西省赣州市寻乌县2024年九年级数学第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省赣州市赣县2025届数学九年级第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。