终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江西省赣州市寻乌县2024年九年级数学第一学期开学调研模拟试题【含答案】

    立即下载
    加入资料篮
    江西省赣州市寻乌县2024年九年级数学第一学期开学调研模拟试题【含答案】第1页
    江西省赣州市寻乌县2024年九年级数学第一学期开学调研模拟试题【含答案】第2页
    江西省赣州市寻乌县2024年九年级数学第一学期开学调研模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省赣州市寻乌县2024年九年级数学第一学期开学调研模拟试题【含答案】

    展开

    这是一份江西省赣州市寻乌县2024年九年级数学第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法中正确的是( )
    A.在△ABC中,AB2+BC2=AC2
    B.在Rt△ABC中,AB2+BC2=AC2
    C.在Rt△ABC中,∠C=90°,AB2+BC2=AC2
    D.AB、BC、AC是△ABC的三边,若AB2+BC2=AC2,则△ABC是直角三角形
    2、(4分)如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点在同一直线上.已知纸板的两条直角边,,测得边离地面的高度,,则树高是( )
    A.4米B.4.5米C.5米D.5.5米
    3、(4分)已知某一次函数的图象与直线平行,且过点(3, 7),那么此一次函数为( )
    A.B.C.D.
    4、(4分)下列各式:,其中分式共有( )
    A.2 个B.3 个C.4 个D.5 个
    5、(4分)若二次根式有意义,则x的取值范围是( )
    A.x≥-5B.x>-5C.x≥5D.x>5
    6、(4分)将函数的图象向上平移5个单位长度,得到的函数解析式为( )
    A.B.
    C.D.
    7、(4分)已知点P(1,-3)在反比例函数的图象上,则的值是
    A.3B.-3C.D.
    8、(4分)小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如果关于x的不等式组的解集是,那么m=___
    10、(4分)正方形ABCD中,,P是正方形ABCD内一点,且,则的最小值是______.
    11、(4分)如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.
    12、(4分)如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为_____.
    13、(4分)如图,在矩形ABCD中,对角线AC与BD交于点O,过点A作AE⊥BD于点E,已知∠EAD=3∠BAE,则∠EOA=______°.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(感知)如图①在等边△ABC和等边△ADE中,连接BD,CE,易证:△ABD≌△ACE;
    (探究)如图②△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求证:△ABD∽△ACE;
    (应用)如图③,点A的坐标为(0,6),AB=BO,∠ABO=120°,点C在x轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为 .
    15、(8分)某学校要从甲乙两名射击运动员中挑选一人参加全市比赛,在选拔赛中,每人进行了5次射击,甲的成绩(环)为:9.7,10,9.6,9.8,9.9;乙的成绩的平均数为9.8,方差为0.032;
    (1)甲的射击成绩的平均数和方差分别是多少?
    (2)据估计,如果成绩的平均数达到9.8环就可能夺得金牌,为了夺得金牌,应选谁参加比赛?
    16、(8分)分解因式:3a2b﹣12ab+12b.
    17、(10分)(1)计算:2﹣6+3
    (2)已知x=+1,y=﹣1,求代数式的值.
    18、(10分)如图△ABC中,点D是边AB的中点,CE∥AB,且AB=2CE,连结BE、CD。
    (1)求证:四边形BECD是平行四边形;
    (2)用无刻度的直尺画出△ABC边BC上的中线AG(保留画图痕迹)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是 .
    20、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.
    21、(4分)已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是____.
    22、(4分)若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
    23、(4分)若方程的解是正数,则m的取值范围_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知函数y=(2m+1)x+m﹣3;
    (1)若函数图象经过原点,求m的值;
    (2)若函数图象在y轴的截距为﹣2,求m的值;
    (3)若函数的图象平行直线y=3x﹣3,求m的值;
    (4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
    25、(10分)计算:(1)2﹣6+3;
    (2)(﹣)(+)+(2﹣3)2;
    用指定方法解下列一元二次方程:
    (3)x2﹣36=0(直接开平方法);
    (4)x2﹣4x=2(配方法);
    (5)2x2﹣5x+1=0(公式法);
    (6)(x+1)2+8(x+1)+16=0(因式分解法)
    26、(12分)已知抛物线与轴交于两点,与轴交于点.
    (1)求的取值范围;
    (2)若,直线经过点,与轴交于点,且,求抛物线的解析式;
    (3)若点在点左边,在第一象限内,(2)中所得到抛物线上是否存在一点,使直线分的面积为两部分?若存在,求出点的坐标;若不存在,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据勾股定理即可解答
    【详解】
    A、在△ABC中,不一定能够得到AB2+BC2=AC2,故选项错误;
    B、在Rt△ABC中,∠B=90°,AB2+BC2=AC2,故选项错误;
    C、在Rt△ABC中,∠B=90°,AB2+BC2=AC2,故选项错误;
    D、AB、BC、AC是△ABC的三边,若AB2+BC2=AC2,则△ABC是直角三角形,故选项正确.
    故选:D.
    此题考查勾股定理,解题关键在于掌握勾股定理的内容
    2、D
    【解析】
    利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.
    【详解】
    解:∵∠DEF=∠BCD-90° ∠D=∠D
    ∴△ADEF∽△DCB

    ∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m
    ∴解得:BC=4
    ∴AB=AC+BC=1.5+4=5.5米
    故答案为:5.5.
    本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
    3、B
    【解析】
    一次函数的图象与直线y=2x平行,所以k值相等,即k=2,又因该直线过点(3, 7),所以就有7=6+b,从而可求出b的值,进而解决问题.
    【详解】
    ∵一次函数y=kx+b的图象与直线平行,
    ∴k=2,
    则即一次函数的解析式为y=2x+b.
    ∵直线过点(3, 7),
    ∴7=6+b,
    ∴b=1.
    ∴直线l的解析式为y=2x+1.
    故选B.
    此题考查一次函数中的直线位置关系,解题关键在于利用待定系数法求解.
    4、A
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    的分母中均不含有字母,因此它们是整式,而不是分式.
    分母中含有字母,因此是分式.
    故选:A.
    此题考查分式的定义,解题关键在于掌握其定义.
    5、C
    【解析】
    【分析】根据二次根式有意义的条件:被开方数为非负数进行求解即可得.
    【详解】由题意得:x-5≥0,
    解得:x≥5,
    故选C.
    【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.
    6、A
    【解析】
    根据函数图象上加下减,可得答案.
    【详解】
    由题意,得
    y=2x+5,
    即y=2x+5,
    故选:A.
    此题考查一次函数图象与几何变换,解题关键在于掌握平移法则
    7、B
    【解析】
    根据点在曲线上,点的坐标满足方程的关系,将P(1,-1)代入,得,解得k=-1.故选B.
    8、C
    【解析】
    根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.
    【详解】
    ∵小李距家3千米,∴离家的距离随着时间的增大而增大.
    ∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合.
    故选C.
    本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-3
    【解析】
    根据“同大取大”的法则列出关于m的不等式,求出m的取值范围即可.
    【详解】
    解:
    ∵m+2>m-1
    又∵不等式组的解集是x>-1,
    ∴m+2=-1,
    ∴m=-3,
    故答案为:-3.
    本题考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则解答即可.
    10、
    【解析】
    根据正方形性质,当A,P,C在同一直线上时,PC+PA是值小.
    【详解】
    当A,P,C在同一直线上时,PC+PA是值小.
    因为,四边形ABCD 是正方形,
    所以,AC= .
    故答案为
    本题考核知识点:正方形性质,勾股定理. 解题关键点:利用两点之间线段最短解决问题.
    11、5.
    【解析】
    根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.
    【详解】
    ∵四边形ABCD为矩形,
    ∴∠BAD=90°,
    ∵将△ABM沿BM折叠得到△NBM,
    ∴∠MAB=∠MNB=90°.
    ∵M为射线AD上的一个动点,△NBC是直角三角形,
    ∴∠NBC=90°与∠NCB=90°都不符合题意,
    ∴只有∠BNC=90°.

    当∠BNC=90°,N在矩形ABCD内部,如图3.
    ∵∠BNC=∠MNB=90°,
    ∴M、N、C三点共线,
    ∵AB=BN=3,BC=5,∠BNC=90°,
    ∴NC=4.
    设AM=MN=x,
    ∵MD=5﹣x,MC=4+x,
    ∴在Rt△MDC中,CD5+MD5=MC5,
    35+(5﹣x)5=(4+x)5,
    解得x=3;
    当∠BNC=90°,N在矩形ABCD外部时,如图5.
    ∵∠BNC=∠MNB=90°,
    ∴M、C、N三点共线,
    ∵AB=BN=3,BC=5,∠BNC=90°,
    ∴NC=4,
    设AM=MN=y,
    ∵MD=y﹣5,MC=y﹣4,
    ∴在Rt△MDC中,CD5+MD5=MC5,
    35+(y﹣5)5=(y﹣4)5,
    解得y=9,
    则所有符合条件的M点所对应的AM和为3+9=5.
    故答案为5.
    本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.
    12、1:3
    【解析】
    试题解析:设平行四边形的面积为1,
    ∵四边形ABCD是平行四边形,

    又∵M是的AB的中点,


    ∴上的高线与上的高线比为


    S阴影面积
    则阴影部分的面积与▱ABCD的面积比为.
    故填空答案:.
    13、
    【解析】
    由已知条件可先求得,在Rt△ABE中可求得,再由矩形的性质可得OA=OB,则可求得,即可求得结果;
    【详解】
    ∵四边形ABCD是矩形,
    ∴,OA=OB,
    ∵∠EAD=3∠BAE,
    ∴,
    ∴,
    ∵AE⊥BD,
    ∴,
    ∴,

    故答案是.
    本题主要考查了利用矩形的性质求角度,准确利用已知条件是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、探究:见解析;应用:.
    【解析】
    探究:由△DAE∽△BAC,推出,可得,由此即可解决问题;
    应用:当点D在AC的下方时,先判定△ABO∽△ADC,得出,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;当点D在AC的上方时,作B关于y轴的对称点B',则同理可得OD最小值为.
    【详解】
    解:探究:如图②中,
    ∵∠BAC=∠DAE,∠ABC=∠ADE,
    ∴△DAE∽△BAC,∠DAB=∠EAC,
    ∴,
    ∴,
    ∴△ABD∽△ACE;
    应用:①当点D在AC的下方时,如图③−1中,
    作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,
    ∴,即,
    又∵∠BAD=∠OAC,
    ∴△ACO∽△ADB,
    ∴∠ABD=∠AOC=90°,
    ∵当OD⊥BE时,OD最小,
    过O作OF⊥BD于F,则△BOF为直角三角形,
    ∵A点的坐标是(0,6),AB=BO,∠ABO=120°,
    ∴易得OB=2,
    ∵∠ABO=120°,∠ABD=90°,
    ∴∠OBF=30°,
    ∴OF=OB=,
    即OD最小值为;
    当点D在AC的上方时,如图③−2中,
    作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',
    ∴∠AB'D=∠AOC=90°,
    ∴当OD⊥B'E时,OD最小,
    过O作OF'⊥B'D于F',则△B'OF'为直角三角形,
    ∵A点的坐标是(0,6),AB'=B'O,∠AB'O=120°,
    ∴易得OB'=2,
    ∵∠AB'O=120°,∠AB'D=90°,
    ∴∠OB'F'=30°,
    ∴OF'=OB'=,
    即OD最小值为.
    故答案为:.
    本题属于相似形综合题,考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.
    15、(1)9.8,0.02;(2)应选甲参加比赛.
    【解析】
    (1)根据平均数和方差的定义列式计算可得;
    (2)根据方差的意义解答即可.
    【详解】
    (1)=×(9.7+10+9.6+9.8+9.9)=9.8(环),
    =×[(9.7﹣9.8)2+(10﹣9.8)2+(9.6﹣9.8)2+(9.8﹣9.8)2+(9.9﹣9.8)2]=0.02(环2);
    (2)∵甲、乙的平均成绩均为9.8环,而=0.02<=0.32,
    所以甲的成绩更加稳定一些,
    则为了夺得金牌,应选甲参加比赛.
    本题考查方差的定义与意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    16、3b(a﹣1)1.
    【解析】
    首先提取公因式3b,再利用完全平方公式分解因式得出答案.
    【详解】
    原式=3b(a1﹣4a+4)
    =3b(a﹣1)1.
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    17、(1)14;(2).
    【解析】
    (1)先化成最简二次根式,再合并即可;
    (2)先化简,再代入求出即可.
    【详解】
    (1)原式
    (2)

    本题考查了二次根式的混合运算和求值,能正确根据运算法则进行化简和计算是解此题的关键.
    18、(1)证明见解析 (2)答案见解析
    【解析】
    (1)利用线段中点的定义可证得AB=2BD,再结合已知证明BD=CE,然后利用有一组对边平行且相等的四边形是平行四边形,可得结论;
    (2)连接DE交BC于点G ,连接AG,利用平行四边形的对角线互相平分,可得点G时BC的中点,利用三角形的中线的定义,可知AG是中线.
    【详解】
    (1)解: ∵点D是边AB的中点,
    ∴AB=2BD,
    ∵AB=2CE,
    ∴BD=CE;
    ∵CE∥AB
    ∴四边形BECD是平行四边形。
    (2)解: 连接DE交BC于点G ,连接AG,
    ∵四边形BECD是平行四边形,
    ∴BG=CG,
    ∴AG是△ABC的BC边上的中线,
    即AG就是所求作的图形.
    本题考查了平形四边形的判定与性质,正确的识别图形是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    试题分析:∵正方形ODBC中,OC=1,∴根据正方形的性质,BC=OC=1,∠BCO=90°。
    ∴在Rt△BOC中,根据勾股定理得,OB=。
    ∴OA=OB=。
    ∵点A在数轴上原点的左边,∴点A表示的数是。
    20、①②③④⑤
    【解析】
    由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1,由勾股定理求出x=2,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;分别求出△EGC,△AEF的面积,可以判断④,由
    ,可求出△FGC的面积,故此可对⑤做出判断.
    【详解】
    解:解:∵四边形ABCD是正方形,
    ∴AB=AD=DC=6,∠B=D=90°,
    ∵CD=2DE,
    ∴DE=1,
    ∵△ADE沿AE折叠得到△AFE,
    ∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,
    ∴AF=AB,
    ∵在Rt△ABG和Rt△AFG中,

    ∴Rt△ABG≌Rt△AFG(HL).
    ∴①正确;
    ∵Rt△ABG≌Rt△AFG,
    ∴BG=FG,∠AGB=∠AGF.
    设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1.
    在Rt△ECG中,由勾股定理得:CG1+CE1=EG1.
    ∵CG=6-x,CE=4,EG=x+1,
    ∴(6-x)1+41=(x+1)1,解得:x=2.
    ∴BG=GF=CG=2.
    ∴②正确;
    ∵CG=GF,
    ∴∠CFG=∠FCG.
    ∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
    ∴∠CFG+∠FCG=∠AGB+∠AGF.
    ∵∠AGB=∠AGF,∠CFG=∠FCG,
    ∴∠AGB=∠FCG.
    ∴AG∥CF.
    ∴③正确;
    ∵S△EGC=×2×4=6,S△AEF=S△ADE=×6×1=6,
    ∴S△EGC=S△AFE;
    ∴④正确,
    ∵△CFG和△CEG中,分别把FG和GE看作底边,
    则这两个三角形的高相同.
    ∴,
    ∵S△GCE=6,
    ∴S△CFG=×6=2.6,
    ∴⑤正确;
    故答案为①②③④⑤.
    本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.
    21、10
    【解析】
    试题分析:由题意可知这组数据的众数为10,再根据平均数公式即可求得x的值,最后根据中位数的求解方法求解即可.
    解:由题意得这组数据的众数为10
    ∵数据10,10,x,8的众数与它的平均数相等
    ∴,解得
    ∴这组数据为12,10,10,8
    ∴这组数的中位数是10.
    考点:统计的应用
    点评:统计的应用是初中数学的重点,是中考必考题,熟练掌握各种统计量的计算方法是解题的关键.
    22、8
    【解析】
    解:设边数为n,由题意得,
    180(n-2)=3603
    解得n=8.
    所以这个多边形的边数是8.
    23、m>-2且m≠0
    【解析】
    分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.
    解析:解方程 解为正数,∴ 且m≠0.
    故答案为m>-2且m≠0
    二、解答题(本大题共3个小题,共30分)
    24、 (1)m=3;(2)m=1;(3)m=1;(4)m<﹣.
    【解析】
    (1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;
    (2)根据题意可得m﹣3=﹣2,解方程即可;
    (3)根据两函数图象平行,k值相等可得2m+1=3;
    (4)根据一次函数的性质可得2m+1<0,再解不等式即可.
    【详解】
    解:(1)∵函数图象经过原点,
    ∴m﹣3=0,且2m+1≠0,
    解得:m=3;
    (2)∵函数图象在y轴的截距为﹣2,
    ∴m﹣3=﹣2,且2m+1≠0,
    解得:m=1;
    (3)∵函数的图象平行直线y=3x﹣3,
    ∴2m+1=3,
    解得:m=1;
    (4)∵y随着x的增大而减小,
    ∴2m+1<0,
    解得:m<﹣.
    此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
    25、(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
    【解析】
    (1)先把各二次根式化为最简二次根式,然后合并同类二次根式即可;
    (2)利用平方差公式和完全平方公式计算;
    (3)直接开平方法求解;
    (4)配方法求解可得;
    (1)公式法求解即可;
    (6)因式分解法解之可得.
    【详解】
    解:(1)2﹣6+3
    =4﹣6×+3×4
    =2+12
    =14;
    (2)(﹣)(+)+(2﹣3)2
    =6﹣1+12+18﹣12
    =31﹣12.
    (3)x2=36,
    ∴x=±6,
    即x1=﹣6,x2=6;
    (4)x2﹣4x+4=2+4,
    即(x﹣2)2=6,
    ∴x﹣2= ,
    ∴x1=2﹣ ,x2=2+ ;
    (1)∵a=2,b=﹣1,c=1,
    ∴b2﹣4ac=21﹣8=17>0,
    ∴x= ,
    即x1= ,x2= ;
    (6)(x+1)2+8(x+1)+16=0
    (x+1+4)2=0,
    即(x+1)2=0,
    ∴x+1=0,
    即x1=x2=﹣1.
    故答案为:(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
    本题考查二次根式的混合运算,解一元二次方程,根据不同的方程选择合适的方法是解题的关键.
    26、(1)m≠-1;(1)y=-x1+5x-6;(3)点P(,-)或(1,0).
    【解析】
    (1)由于抛物线与x轴有两个不同的交点,可令y=0,则所得方程的根的判别式△>0,可据此求出m的取值范围.
    (1)根据已知直线的解析式,可得到D点的坐标;根据抛物线的解析式,可用m表示出A、B的坐标,即可得到AD、BD的长,代入AD×BD=5,即可求得m的值,从而确定抛物线的解析式.
    (3)直线PA分△ACD的面积为1:4两部分,即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),即可求解.
    【详解】
    解:(1)∵抛物线与x轴有两个不同的交点,
    ∴△=(m-4)1+11(m-1)=m1+4m+4=(m+1)1>0,
    ∴m≠-1.
    (1)∵y=-x1-(m-4)x+3(m-1)=-(x-3)(x+m-1),
    ∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
    则:D(0,-1),
    则有:AD×BD=,
    解得:m=1(舍去)或-1,
    ∴m=-1,
    抛物线的表达式为:y=-x1+5x-6①;
    (3)存在,理由:
    如图所示,点C(0,-6),点D(0,-1),点A(1,0),
    直线PA分△ACD的面积为1:4两部分,
    即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),
    将点H、A的坐标代入一次函数表达式并解得:
    直线HA的表达式为:y=x-1或y=x-5②,
    联立①②并解得:x=或1,
    故点P(,-)或(1,0).
    本题考查的是二次函数综合运用,涉及到一次函数、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.
    题号





    总分
    得分

    相关试卷

    江西省赣州市于都县2024年数学九年级第一学期开学监测模拟试题【含答案】:

    这是一份江西省赣州市于都县2024年数学九年级第一学期开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    江西省赣州市大余县2024年数学九年级第一学期开学考试模拟试题【含答案】:

    这是一份江西省赣州市大余县2024年数学九年级第一学期开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江西省寻乌县九上数学开学复习检测模拟试题【含答案】:

    这是一份2024年江西省寻乌县九上数学开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map