江西省金溪县2024年数学九年级第一学期开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是( )
A.6,7,8B.5,6,8C.,,D.4,5,6
2、(4分)如图,不能判定△AOB和△DOC相似的条件是( )
A.AO•CO=BO•DOB.C.∠A=∠DD.∠B=∠C
3、(4分)若把分式中的和都扩大为原来的5倍,那么分式的值( )
A.扩大为原来的5倍B.扩大为原来的10倍C.不变D.缩小为原来的倍
4、(4分)若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是
A.-1B.0C.1D.2
5、(4分)在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )
A.6B.7C.2D.2
6、(4分)如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E,DF⊥BC 于点 F,DE=6,则 DF 的长度是( )
A.2B.3C.4D.6
7、(4分)函数y=中自变量x的取值范围是( )
A.x≥﹣1 B.x≤﹣1 C.x>﹣1 D.x<﹣1
8、(4分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为( )
A.40°B.45°C.50°D.55°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图一个圆柱,底圆周长10cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行_______cm .
10、(4分)如图,为的中位线,点在上,且为直角,若,,则的长为__________.
11、(4分)如图,在平面直角坐标系内所示的两条直线,其中函数随增大而减小的函数解析式是______________________
12、(4分)把一元二次方程2x2﹣x﹣1=0用配方法配成a(x﹣h)2+k=0的形式(a,h,k均为常数),则h和k的值分别为_____
13、(4分)如图,在正方形中,点是对角线上一点,连接,将绕点逆时针方向旋转到,连接,交于点,若,,则线段的长为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形ABCD中,E是AD上任意一点,于F点,于G点.
求证:.
15、(8分)如图,在平面直角坐标系中,各顶点的坐标分别为
(1)作出关于原点成中心对称的.
(2)作出点关于轴的对称点若把点向右平移个单位长度后,落在的内部(不包括顶点和边界),的取值范围,
16、(8分)(1)如图1,在矩形ABCD中,∠BOC=120°,AB=5,求BD的长.
(2)如图2,在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,求菱形的周长.
17、(10分)如图,正方形ABCD的顶点坐标分别为A(1,2),B(1,-2),C(5,-2),D(5,2),将正方形ABCD向左平移5个单位,作出它的图像,并写出图像的顶点坐标.
18、(10分)已知,直线y=2x-2与x轴交于点A,与y轴交于点B.
(1)如图①,点A的坐标为_______,点B的坐标为_______;
(2)如图②,点C是直线AB上不同于点B的点,且CA=AB.
①求点C的坐标;
②过动点P(m,0)且垂直与x轴的直线与直线AB交于点E,若点E不在线段BC上,则m的取值范围是_______;
(3)若∠ABN=45º,求直线BN的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在□ABCD中,AB=5,AD=6,将□ABCD沿AE翻折后,点B恰好与点 C重合,则折痕AE的长为____.
20、(4分)如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.
21、(4分)如图所示:分别以直角三角形三边为边向外作三个正方形,其面积分别用、、表示,若,,则的长为__________.
22、(4分)如果是关于的方程的增根,那么实数的值为__________
23、(4分)如图是两个一次函数y1=k1x+b1与y2=k2x+b2的图象,已知两个图象交于点A(3,2),当k1x+b1>k2x+b2时,x的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)天坛是明清两代皇帝每年祭天和祈祷五谷丰收的地方,以其严谨的建筑布局、奇特的建筑构造和瑰丽的建筑装饰著称于世,被列为世界文化遗产.
小惠同学到天坛公园参加学校组织的综合实践活动,她分别以正东,正北方向为x轴,y轴的正方向建立了平面直角坐标系描述各景点的位置.
小惠:“百花园在原点的西北方向;表示回音壁的点的坐标为”
请依据小惠同学的描述回答下列问题:
请在图中画出小惠同学建立的平面直角坐标系;
表示无梁殿的点的坐标为______;
表示双环万寿亭的点的坐标为______;
将表示祈年殿的点向右平移2个单位长度,再向下平移个单位长度,得到表示七星石的点,那么表示七星石的点的坐标是______.
25、(10分)如图,在ABCD中,AD∥BC,AC=BC=4,∠D=90°,M,N分别是AB、DC的中点,过B作BE⊥AC交射线AD于点E,BE与AC交于点F.
(1)当∠ACB=30°时,求MN的长:
(2)设线段CD=x,四边形ABCD的面积为y,求y与x的函数关系式及其定义域;
(3)联结CE,当CE=AB时,求四边形ABCE的面积.
26、(12分)如图,铁路上A,B两点相距25km,C,D为两村庄,于点A,于点B,若,,现要在AB上建一个周转站E,使得C,D两村到E站的距离相等,则周转站E应建在距A点多远处?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.
【详解】
,,
,
能组成直角三角形的一组数是、、.
故选:.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
2、B
【解析】
选项A、能判定.利用两边成比例夹角相等.
选项B、不能判定.
选项C、能判定.利用两角对应相等的两个三角形相似.
选项D、能判定.利用两角对应相等的两个三角形相似.
故选B.
点睛:相似常见图形
(1)称为“平行线型”的相似三角形(如图,有“A型”与“X型”图)
(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形,有“反A共角型”、“反A共角共边型”、 “蝶型”,如下图:
3、A
【解析】
把和都扩大为原来的5倍,代入原式化简,再与原式比较即可.
【详解】
和都扩大为原来的5倍,得
,
∴把分式中的和都扩大为原来的5倍,那么分式的值扩大为原来的5倍.
故选A.
本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
4、D
【解析】
联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.
【详解】
解:联立,
解得:,
∵交点在第一象限,
∴,
解得:a>1.
故选D.
本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.
5、A
【解析】
根据题意画出图形,利用勾股定理解答即可.
【详解】
如图,
设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:
,
两式相加得:a2+b2=31,
根据勾股定理得到斜边==1.
故选A.
本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.
6、D
【解析】
根据角平分线的性质进行求解即可得.
【详解】
∵BG 是∠ABC 的平分线,DE⊥AB,DF⊥BC,
∴DF=DE=6,
故选D.
本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.
7、A
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
解:由题意得,,
解得.
故选:A.
本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
8、A
【解析】
解:∵AE∥BD,∴∠CBD=∠E=35°.∵BD平分∠ABC,∴∠CBA=70°.∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.
点睛:考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
把圆柱展开后如图所示,则AC=5,BC=4,根据勾股定理得AB2=AC2+BC2=52+42=25+16=41,所以AB=,故答案为.
10、1
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.
【详解】
∵DE为△ABC的中位线,
∴DE=BC=4(cm),
∵∠AFC为直角,E为AC的中点,
∴FE=AC=3(cm),
∴DF=DE−FE=1(cm),
故答案为:1cm.
此题考查三角形中位线定理,解题关键在于掌握其性质定义.
11、;
【解析】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.
【详解】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.因此可分析的的图象随着随增大而减小的.
故答案为
本题主要考查一次函数的单调性,当k>0是,随增大而增大,当k<0时,随增大而减小.
12、
【解析】
先将方程变形,利用完全平方公式进行配方.
【详解】
解:2x2﹣x﹣1=1,
x2﹣x﹣=1,
x2﹣x+﹣﹣=1,
(x﹣)2﹣=1.
∴h=,k=﹣.
故答案是:,﹣.
考查了配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
13、
【解析】
连接EF,过点E作EM⊥AD,垂足为M,设ME=HE=FH=x,则GH=3-x,从而可得到,于是可求得x的值,最后在Rt△AME中,依据勾股定理可求得AE的长.
【详解】
解:如图所示:连接EF,过点E作EM⊥AD,垂足为M.
∵ABCD为正方形,EM⊥AD,∠EDF=90°,AD=BC=CD=DG+CG=5,
∴△MED和△DEF均为等腰直角三角形.
∵DE=DF,∠EDH=∠FDH=45°,
∴DH⊥EF,EH=HF,
∴FH∥BC.
设ME=HE=FH=x,则GH=3﹣x.
由FH∥BC可知:,
即,解得:,
∴.
在Rt△AME中,.
故答案为:.
本题主要考查的是正方形的性质、等腰直角三角形的性质和判定、平行线分线段成比例定理、勾股定理的应用,求得ME的长是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析
【解析】
根据于F点,于G点,可得,根据四边形ABCD是正方形,可得,再根据,,可得:
,在和中,由,可判定≌,根据全等三角形的性质可得:.
【详解】
证明:于F点,于G点,
,
四边形ABCD是正方形,
,
,
又,
,
在和中,
,
≌,
,
本题主要考查正方形的性质和全等三角形的判定和性质,解决本题的关键是要熟练掌握正方形的性质和全等三角形的判定和性质.
15、(1)见解析;(2)见解析,
【解析】
(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)根据关于x轴对称的点的坐标特征写出C′坐标,则把点C'向右平移4个单位到C1位置,把点C'向右平移1个单位落在A1B1上,从而得到a的范围.
【详解】
解:(1)如图,△A1B1C1为所作;
(2)C′的坐标为(-2,-3),把点C'向右平移a个单位长度后落后在△A1B1C1的内部(不包括顶点和边界),则a的取值范围为:4<a<1.
本题考查了作图——旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
16、(1)10;(2)1
【解析】
解:(1)∵四边形ABCD是矩形,
∴AC=BD,OB=OC,
∵∠BOC=11°,
∴∠BCA=30°,
∵在Rt△ABC中,AB=5,
∴AC=2AB=10,
∴BD=AC=10;
(2)∵四边形ABCD是菱形,
∴OA=AC═×8=4,OB=BD=×6=3,AC⊥BD,
∴AB==5,
∴菱形的周长为1.
17、见解析;
【解析】
根据平移的性质作图,然后结合图形写出顶点坐标.
【详解】
解:如图所示,正方形A1B1C1D1即为所求,
顶点坐标为:A1(-4,2),B1(-4,-2),C1(0,-2),D1(0,2).
本题考查了作图——平移变换,熟练掌握平移的性质是解题的关键.
18、(1)(1,0),(0,-2);(2)C(2,2);m<0或m>2;(3) 或y=-3x-2.
【解析】
(1)利用函数解析式和坐标轴上点的坐标特征即可解决问题;
(2)①如图②,过点C 作CD⊥x 轴,垂足是D.构造全等三角形,利用全等三角形的性质求得点C的坐标;
②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2;
(3)如图③中,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.利用全等三角形的性质求出点N坐标,当直线BN′⊥直线BN时,直线BN′也满足条件,求出直线BN′的解析式即可.
【详解】
解:(1)如图①,
令y=0,则2x-2=0,即x=1.所以A(1,0).
令x=0,则y=-2,即B(0,-2).
故答案是:(1,0);(0,-2);
(2)①如图②,
过点C 作CD⊥x 轴,垂足是D,
∵∠BOA=∠ADC=90°,
∠BAO=∠CAD,
CA=AB,
∴△BOA≌△CAD(AAS),
∴CD=OB=2,AD=OA=1,
∴C(2,2);
②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2.
故答案是:m<0或m>2;
(3)如图③,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.
∵∠AOB=∠BAN=∠AHN=90°,
∴∠OAB+∠ABO=90°,∠OAB+∠HAN=90°,
∴∠ABO=∠HAN,
∵AB=AN,
∴△ABO≌△NAH(AAS),
∴AH=OB=2,NH=OA=1,
∴N(3,-1),
设直线BN的解析式为y=kx+b,
则有:,
解得,
∴直线BN的解析式为y=x-2,
当直线BN′⊥直线BN时,直线BN′也满足条件,直线BN′的解析式为:
.
∴满足条件的直线BN的解析式为y=x-2或y=-3x-2.
本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.
【详解】
解:∵翻折后点B恰好与点C重合,
∴AE⊥BC,BE=CE,
∵BC=AD=6,
∴BE=3,
∴AE=.
故答案为:1.
本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.
20、2
【解析】
根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.
【详解】
解:∵四边形AFCE是正方形,
∴AE=EC,∠E=90°,
△ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,
∴△ABF≌△ADE,
∴正方形AFCE的面积=四边形ABCD的面积=18cm1.
∴AE=CE==,
∴AC=AE=2cm.
故答案为:2.
本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.
21、1.
【解析】
先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.
【详解】
解:设Rt△ABC的三边分别为a、b、c,
∴S1=a2=25,S2=b2,S3=c2=9,
∵△ABC是直角三角形,
∴c2+b2=a2,即S3+S2=S1,
∴S2=S1-S3=25-9=16,
∴BC=1,
故答案为:1.
本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.
22、1
【解析】
分式方程去分母转化为整式方程,把x=2代入计算即可求出k的值.
【详解】
去分母得:x+2=k+x2-1,
把x=2代入得:k=1,
故答案为:1.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
23、x>3
【解析】
观察图象,找出函数y1=k1x+b1的图象在y2=k2x+b2的图象上方时对应的自变量的取值即可得答案.
【详解】
∵一次函数y1=k1x+b1与y2=k2x+b2的两个图象交于点A(3,2),
∴当k1x+b1>k2x+b2时,x的取值范围是x>3,
故答案为:x>3.
本题考查了一次函数与不等式,运用数形结合思想是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、画平面直角坐标系见解析;,;.
【解析】
(1)直接利用回音壁的点的坐标为(0,-2),得出原点位置,建立平面直角坐标系即可;
(2)利用所画平面直角坐标系得出各点坐标即可;
(3)利用平移的性质得出七星石的点的坐标.
【详解】
画出平面直角坐标系如图;
表示无梁殿的点的坐标为点;
表示双环万寿亭的点的坐标为;
故答案为,;
表示七星石的点的坐标是.
故答案为.
本题考查了平移变换以及用坐标表示地理位置,正确建立平面直角坐标系是解题的关键.
25、 (1)MN=2+;(2)y=•x•2x(0<x<4);(3)1或1.
【解析】
(1)解直角三角形求出AD,利用梯形中位线定理即可解决问题;
(2)求出AD,利用梯形的面积公式计算即可;
(3)作AG⊥BC于G,EH⊥BC于H.想办法证明△ABC≌△ECB,推出AC=BE=4,因为AC⊥BE,可得S四边形ABCE=•AC•BE,由此计算即可;
【详解】
(1)∵AD∥BC,
∴∠DAC=∠ACB=30°,
在Rt△ACD中,∵AC=4,∠D=90°,∠ACD=30°,
∴CD=AC=2,AD=CD=2,
∵AM=BM,DN=CN,
∴MN是梯形ABCD的中位线,
∴MN=(AD+BC)=2+.
(2)在Rt△ACD中,∵AC=4,∠D=90°,CD=x,
∴AD==,
∴y=•(AD+BC)•CD=(+4)x=•x•+2x(0<x<4).
(3)①当点E在线段AD上时,作AG⊥BC于G,EH⊥BC于H.
∵AD∥BC,AG⊥BC于G,EH⊥BC于H.
∴AG=EH,∠AGB=∠EHC=90°,
∵AB=EC,
∴Rt△ABG≌Rt△ECH,
∴∠ABC=∠ECB,
∵AB=EC,BC=CB,
∴△ABC≌△ECB,
∴AC=BE=4,
∵AC⊥BE,
∴S四边形ABCE=•AC•BE=×4×4=1.
②当点E在AD的延长线上时,易证四边形ABCE是平行四边形,
∵BE⊥AC,
∴四边形ABCE是菱形,
∵BC=AC=AB,
∴△ABC,△ACE是等边三角形,
∴S四边形ABCE=2××42=1.
本题考查四边形综合题、勾股定理、梯形的中位线定理、梯形的面积、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
26、E应建在距A点15km处.
【解析】
根据题意设E点在距A点xkm处,再由勾股定理列出方程和,再由进行求解即可.
【详解】
解:设E点在距A点xkm处,
则AE长为xkm,BE长为km.
,是直角三角形.
由勾股定理,得.
同理,在中,,由题意,得,即..
,
解得.
答:E应建在距A点15km处.
本题考查勾股定理的应用,解题的关键是掌握勾股定理的应用.
题号
一
二
三
四
五
总分
得分
江西省新余市名校2024年数学九年级第一学期开学质量检测试题【含答案】: 这是一份江西省新余市名校2024年数学九年级第一学期开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江西省宜春市2025届九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份江西省宜春市2025届九年级数学第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。