江西省上饶上饶县联考2024-2025学年数学九上开学综合测试模拟试题【含答案】
展开
这是一份江西省上饶上饶县联考2024-2025学年数学九上开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( )
A.12B.10C.8D.11
2、(4分)若=2﹣a,则a的取值范围是( )
A.a=2B.a>2C.a≥2D.a≤2
3、(4分)若直线经过第一、二、四象限,则化简的结果是 ( )
A.2 kB.2 kC.k 2D.不能确定
4、(4分)在平面直角坐标系中,直线l经过一、二、四象限,若点(2,3),(0,b),(﹣1,a),(c,﹣1)都在直线l上,则下列判断不正确的是( )
A.b>aB.a>3C.b>3D.c>0
5、(4分)已知等腰三角形的底角为65°,则其顶角为( )
A.50°B.65°C.115°D.50°或65°
6、(4分)如图,抛物线与直线经过点,且相交于另一点,抛物线与轴交于点,与轴交于另一点,过点的直线交抛物线于点,且轴,连接,当点在线段上移动时(不与、重合),下列结论正确的是( )
A.B.
C.D.四边形的最大面积为13
7、(4分)若代数式有意义,则x应满足( )
A.x=0B.x≠1C.x≥﹣5D.x≥﹣5且x≠1
8、(4分)对于二次函数的图象与性质,下列说法正确的是( )
A.对称轴是直线,最大值是2B.对称轴是直线,最小值是2
C.对称轴是直线,最大值是2D.对称轴是直线,最小值是2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某公司招聘员工一名,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如下表所示:
若公司将面试成绩、笔试成绩分别赋予6和4的权,则被录取的人是__________.
10、(4分)如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是 cm.
11、(4分)一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.
12、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
13、(4分)把二次根式化成最简二次根式,则=____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知正比例函数y=ax与反比例函数y=的图象交于点A(3,2)
(1)求上述两函数的表达式;
(2)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A点作直线AC∥y轴交x轴于点C,交直线MB于点D.若s四边形OADM=6,求点M的坐标,并判断线段BM与DM的大小关系,说明理由;
(3)探索:x轴上是否存在点P.使△OAP是等腰三角形?若存在,求出点P的坐标; 若不存在,说明理由.
15、(8分)2019车8月8日至18日,第十八届“世警会”首次来到亚洲在成都举办武侯区以相关事宜为契机,进一步改善区域生态环境.在天府吴园道部分地段种植白芙蓉和醉芙蓉两种花卉.经市场调查,种植费用y(元)与种植面积x(m2)之间的函数关系如图所示.
(1)请直接写出两种花卉y与x的函数关系式;
(2)白芙蓉和醉芙蓉两种花卉的种植面积共1000m2,若白芙蓉的种植面积不少于100m2且不超过醉芙蓉种植面积的3倍,那么应该怎样分配两种花卉的种植面积才能使种植总费用最少?
16、(8分)某商场计划购进A、B两种新型节能台灯,已知B型节能台灯每盏进价比A型的多40元,且用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同.
(1)求每盏A型节能台灯的进价是多少元?
(2)商场将购进A、B两型节能台灯100盏进行销售,A型节能台灯每盏的售价为90元,B型节能台灯每盏的售价为140元,且B型节能台灯的进货数量不超过A型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?
17、(10分)分解因式: 5x2-45
18、(10分)将一矩形纸片放在直角坐标系中,为原点,点在轴上,点在轴上,.
(1)如图1,在上取一点,将沿折叠,使点落在边上的点处,求直线的解析式;
(2)如图2,在边上选取适当的点,将沿折叠,使点落在边上的点处,过作于点,交于点,连接,判断四边形的形状,并说明理由;
(3)、在(2)的条件下,若点坐标,点在直线上,问坐标轴上是否存在点,使以为顶点的四边形是平行四边形,若存在,请直接写出点坐标;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A、B两个顶点,过顶点C作CD⊥AB,垂足为D.“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的长与宽的比值为________.
20、(4分)计算()•()的结果是_____.
21、(4分)如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .
22、(4分)已知命题:全等三角形的对应角相等.这个命题的逆命题是:__________.
23、(4分)当分式有意义时,x的取值范围是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形中,,,过对角线的中点的直线分别交,边于点,连结,.
(1)求证:四边形是平行四边形.
(2)当四边形是菱形时,求及的长.
25、(10分)在平面直角坐标系中,直线与轴、轴分别相交于A、B两点,求AB的长及△OAB的面积.
26、(12分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:
(1)当参加老师的人数为多少时,两家旅行社收费相同?
(2)求出y1、y2关于x的函数关系式?
(3)如果共有50人参加时,选择哪家旅行社合算?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.
【详解】
设这个多边形是n边形,
根据题意得,(n﹣2)•180°=5×360°,
解得n=1.
故选:A.
本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.
2、D
【解析】
根据二次根式有意义的条件分析可得解.
【详解】
∵=2-ɑ,
∴a-2≤0,
即a≤2,
故选D.
3、B
【解析】
根据一次函数图像的性质,函数图像过一、二、四象限,则k<0.b>0.并考察了绝对值的性质.
【详解】
∵直线y=kx+2经过第一、二、四象限,
∴k<0,
∴k-2<0,
∴|k-2|=2-k,
故选B.
本题考查了一次函数图像的性质,难点在于根据函数所过象限确定系数的值.
4、A
【解析】
依据直线l经过一、二、四象限,经过点(2,3),(1,b),(﹣1,a),(c,﹣1),在直角坐标系中画出直线l,即可得到a>b,a>b>3,c>1.
【详解】
.解:∵直线l经过一、二、四象限,经过点(2,3),(1,b),(﹣1,a),(c,﹣1),
∴画图可得:
∴a>b>3,c>1,
故选A.
本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.
5、A
【解析】
等腰三角形的一个底角是65°,则另一个底角也是65°,据此用三角形内角和减去两个底角的度数,就是顶角的度数.
【详解】
解:180°65°65°=50°,
∴它的顶角是50°.
故选:A.
此题考查等腰三角形的性质和三角形内角和定理的灵活应用.
6、C
【解析】
】(1)当MN过对称轴的直线时,解得:BN=,而MN=,BN+MN=5=AB;
(2)由BC∥x轴(B、C两点y坐标相同)推知∠BAE=∠CBA,而△ABC是等腰三角形,∠CBA≠∠BCA,故∠BAC=∠BAE错误;
(3)如上图,过点A作AD⊥BC、BE⊥AC,由△ABC是等腰三角形得到:EB是∠ABC的平分线,∠ACB-∠ANM=∠CAD=∠ABC;
(4)S四边形ACBM=S△ABC+S△ABM,其最大值为.
【详解】
解:将点A(2,0)代入抛物线y=ax2-x+4与直线y=x+b
解得:a=,b=-,
设:M点横坐标为m,则M(m,m2-m+4)、N(m,m-),
其它点坐标为A(2,0)、B(5,4)、C(0,4),
则AB=BC=5,则∠CAB=∠ACB,
∴△ABC是等腰三角形.
A、当MN过对称轴的直线时,此时点M、N的坐标分别为(,-)、(,),
由勾股定理得:BN=,而MN=,
BN+MN=5=AB,
故本选项错误;
B、∵BC∥x轴(B、C两点y坐标相同),
∴∠BAE=∠CBA,而△ABC是等腰三角形不是等边三角形,
∠CBA≠∠BCA,
∴∠BAC=∠BAE不成立,
故本选项错误;
C、如上图,过点A作AD⊥BC、BE⊥AC,
∵△ABC是等腰三角形,
∴EB是∠ABC的平分线,
易证:∠CAD=∠ABE=∠ABC,
而∠ACB-∠ANM=∠CAD=∠ABC,
故本选项正确;
D、S四边形ACBM=S△ABC+S△ABM,
S△ABC=10,
S△ABM=MN•(xB-xA)=-m2+7m-10,其最大值为,
故S四边形ACBM的最大值为10+=12.25,故本选项错误.
故选:C.
本题考查的是二次函数综合题,涉及到一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,抛物线与x轴的交点,以及等腰三角形、平行线等几何知识,是一道难度较大的题目.
7、D
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.
【详解】
要使代数式有意义,必须有x+5≥0且x-1≠0,
即x≥-5且x≠1,
故选D.
8、A
【解析】
根据抛物线的图象与性质即可判断.
【详解】
解:由抛物线的解析式:y=-(x-1)2+2,
可知:对称轴x=1,
开口方向向下,所以有最大值y=2,
故选:A.
本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、乙.
【解析】
根据加权平均数的计算公式进行计算即可.
【详解】
∵甲的面试成绩为86分,笔试成绩为90分,面试成绩和笔试成绩6和4的权,
∴甲的平均成绩的是(分).
∵乙的面试成绩为92分,笔试成绩为83分,面试成绩和笔试成绩6和4的权,
∴乙的平均成绩的是(分).
∵
∴被录取的人是乙
故答案为:乙.
此题考查了加权平均数的计算公式,解题的关键是计算平均数时按6和4的权进行计算.
10、.
【解析】
试题分析:点F与点C重合时,折痕EF最大,
由翻折的性质得,BC=B′C=10cm,
在Rt△B′DC中,B′D==8cm,
∴AB′=AD﹣B′D=10﹣8=2cm,
设BE=x,则B′E=BE=x,
AE=AB﹣BE=6﹣x,
在Rt△AB′E中,AE2+AB′2=B′E2,
即(6﹣x)2+22=x2,
解得x=,
在Rt△BEF中,EF=cm.
故答案是.
考点:翻折变换(折叠问题).
11、1
【解析】
根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.
【详解】
∵这组数据的中位数和平均数相等,
∴(4+5)÷2=(2+4+5+x)÷4,
解得:x=1.
故答案为:1.
此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.
12、8
【解析】
根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.
【详解】
解:在菱形ABCD中,AB=5,AC=6,
因为对角线互相垂直平分,
所以∠AOB=90°,AO=1,
在RT△AOB中,BO=,
∴BD=2BO=8.
注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.
13、 .
【解析】
被开方数的分母分子同时乘以3即可.
【详解】
解:原式= .
故答案为: .
本题考查化简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,进行化简.
三、解答题(本大题共5个小题,共48分)
14、(1)反比例函数的表达式为:y=,正比例函数的表达式为y=x;(2)BM=DM;(3)存在,(,0)或(﹣,0)或(6,0)或(,0)
【解析】
(1)将A(3,2)分别代入y=,y=ax中,得ak的值,进而可得正比例函数和反比例函数的表达式;
(2)由S△OMB=S△OAC=|k|=3,可得S矩形OBDC=12;即OC•OB=12;进而可得mn的值,故可得BM与DM的大小;比较可得其大小关系;
(3)存在.由(2)可知D(3,4),根据矩形的性质得A(3,2),分为OA为等腰三角形的腰,OA为等腰三角形的底,分别求P点坐标.
【详解】
解:(1)将A(3,2)分别代入y=,y=ax中,得:2=,3a=2
∴k=6,a=,
∴反比例函数的表达式为:y=,
正比例函数的表达式为y=x;
(2)BM=DM
理由:∵S△OMB=S△OAC=×|k|=3
∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12
即OC•OB=12
∵OC=3
∴OB=4
即n=4
∴m==,即点M的坐标为(,4)
∴MB=,MD=3﹣=,
∴MB=MD;
(3)存在.
由(2)得A(3,2),OA=
当OA为等腰三角形的腰时,P(,0)或(﹣,0)或(6,0),
当OA为等腰三角形的底,P(,0).
∴满足条件的P点坐标为(,0)或(﹣,0)或(6,0)或(,0).
此题综合考查了反比例函数,正比例函数等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.
15、(1)y=,y=100x(x≥0);(2)当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少
【解析】
(1)根据函数图象中的数据可以求得两种花卉y与x的函数关系式;
(2)根据(1)中的函数解析式和题意,利用一次函数的性质可以求得怎样分配两种花卉的种植面积才能使种植总费用最少.
【详解】
(1)当0≤x≤200时,设白芙蓉对应的函数解析式为y=ax,
200a=24000,得a=120,
即当0≤x≤200时,白芙蓉对应的函数解析式为y=120x,
当x>200时,设白芙蓉对应的函数解析式为y=bx+c,
,得,
即当x>200时,白芙蓉对应的函数解析式为y=80x+8000,
由上可得,白芙蓉对应的函数解析式为y=
设醉芙蓉对应的函数解析式为y=dx,
400d=40000,得d=100,
即醉芙蓉对应的函数解析式为y=100x(x≥0);
(2)设白芙蓉种植面积为em2,则醉芙蓉种植面积为(1000-e)m2,种植的总费用为w元,
∵白芙蓉的种植面积不少于100m2且不超过醉芙蓉种植面积的3倍,
∴100≤e≤3(1000-e),
解得,100≤e≤750,
当100≤e≤200时,
w=120e+100(1000-e)=20e+100000,
∴当e=100时,w取得最小值,此时w=102000,
当200<e≤750时,
w=80e+8000+100(1000-e)=-20e+108000,
∴当e=750时,w取得最小值,此时w=93000,1000-e=250,
由上可得,当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少,
答:当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
16、(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.
【解析】
(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同,列方程求解;
(2)设购进B型台灯m盏,根据商场购进100盏台灯且规定B型台灯的进货数量不超过A型台灯数量的2倍,列不等式求解,进一步得到商场在销售完这批台灯时获利最多时的利润.
【详解】
解:(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,
根据题意得, ,
解得:x=60,
经检验:x=60是原方程的解,
故x+40=100,
答:每盏A型节能台灯的进价是60元,则B型节能台灯每盏进价为100元;
(2)设购进B型节能台灯m盏,购进A型节能台灯(100﹣m)盏,
依题意有m≤2(100﹣m),
解得m≤66,
90﹣60=30(元),
140﹣100=40(元),
∵m为整数,30<40,
∴m=66,即A型台灯购进34盏,B型台灯购进66盏时获利最多,
34×30+40×66
=1020+2640
=3660(元).
此时利润为3660元.
答:(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.
本题考查分式方程的应用和一元一次不等式的应用,解题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.
17、5(x+3)(x-3)
【解析】
先提出公因式5,然后用平方差公式进行分解即可。
【详解】
解:原式=5(x+3)(x-3)
故答案为:5(x+3)(x-3)
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键
18、(1);(2)四边形为菱形,理由详见解析;(3)以为顶点的四边形是平行四边形时,点坐标或或
【解析】
(1)根据题意求得点E的坐标,再代入,把代入得到,即可解答
(2)先由折叠的性质得出,由平行线的性质得出 ,即四边形为菱形.
(3)为顶点的四边形是平行四边形时,点坐标或或.
【详解】
解:(1)如图1中,
,是由翻折得到,
,
在中,,
,设,
在中,,解得,
,
设直线的解析式为,把代入得到,
直线的解析式为.
(2)如图2中,四边形为菱形,
理由:是由翻折得到,
,.
,
,而
.四边形为菱形.
(3)以为顶点的四边形是平行四边形时,
点坐标或或.
本题考查四边形综合,根据题意做辅助线和判断等量关系列出方程是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
如图,连接AC、BC、BE、AE,根据图形可知四边形ACBE是正方形,进而利用正方形的性质求出即可
【详解】
如图,连接AC、BC、BE、AE,
∵五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,
∴四边形ACBE是正方形,
∵CD⊥AB,
∴点D为对角线AB、CE的交点,
∴CD=AB,
∴这个矩形的长与宽的比值为=2,
故答案为:2
此题主要考查了图形的剪拼,正确利用正方形的性质是解题关键.
20、-2
【解析】
利用平方差公式进行展开计算即可得.
【详解】
=
=-2,
故答案为:-2.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
21、(﹣2,2)
【解析】
试题分析:∵直线y=2x+4与y轴交于B点,
∴x=0时,
得y=4,
∴B(0,4).
∵以OB为边在y轴右侧作等边三角形OBC,
∴C在线段OB的垂直平分线上,
∴C点纵坐标为2.
将y=2代入y=2x+4,得2=2x+4,
解得x=﹣2.
所以C′的坐标为(﹣2,2).
考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.
22、对应角相等的三角形全等
【解析】
根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.
【详解】
命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,
故其逆命题是对应角相等的三角形是全等三角形.
故答案是:对应角相等的三角形是全等三角形.
考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
23、
【解析】
分式有意义的条件为,即可求得x的范围.
【详解】
根据题意得:,
解得:.
答案为:
本题考查了分式有意义的条件,熟练掌握分母不为0是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)BE=5,EF=.
【解析】
(1)根据平行四边形的性质,判定,得出四边形的对角线互相平分,进而得出结论;
(2)在中,由勾股定理得出方程,解方程求出,由勾股定理求出,得出,再由勾股定理求出,即可得出的长.
【详解】
(1)证明:四边形是矩形,是的中点,
,,,,
,
在和中,,
,
,
四边形是平行四边形;
(2)解:当四边形是菱形时,,
设,则,.
在中,,
,
解得,即,
,
,
,
,
.
本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.
25、,1
【解析】
根据两点距离公式、三角形的面积公式求解即可.
【详解】
解:令y=0,
解得
令x=0,
解得
∴A、B两点坐标为(3,0)、(0,6)
∴
∴
故答案为:,1.
本题考查了直线解析式的几何问题,掌握两点距离公式、三角形的面积公式是解题的关键.
26、(1)当参加老师的人数为30时,两家旅行社收费相同;(2)y2=40x+600;(3)如果共有50人参加时,选择乙家旅行社合算,理由见解析
【解析】
(1)根据函数图象和图象中的数据可以得到当参加老师的人数为多少时,两家旅行社收费相同;
(2)根据函数图象中的数据可以求得y1、y2关于x的函数关系式;
(3)根据函数图象可以得到如果共有50人参加时,选择哪家旅行社合算.
【详解】
解:(1)由图象可得,
当参加老师的人数为30时,两家旅行社收费相同;
(2)设y1关于x的函数关系式是y1=ax,
30a=1800,得a=60,
即y1关于x的函数关系式是y1=60x;
设y2关于x的函数关系式是y2=kx+b,
,得,
即y2关于x的函数关系式是y2=40x+600;
(3)由图象可得,
当x>50时,乙旅行社比较合算,
∴如果共有50人参加时,选择乙家旅行社合算.
本题考查一次函数的应用、方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
题号
一
二
三
四
五
总分
得分
应试者
面试
笔试
甲
86
90
乙
92
83
相关试卷
这是一份江西省上饶中学2025届数学九上开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省上饶县七中2025届数学九年级第一学期开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江西省上饶县联考数学九上开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。