酒泉市重点中学2024-2025学年九年级数学第一学期开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果,为有理数,那么( )
A.3B.C.2D.﹣2
2、(4分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )
A.B.2C.2D.4
3、(4分)化简的结果是()
A.-2B.2C.D.4
4、(4分)如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是( )
A.2B.3C.4D.5
5、(4分)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )
A.2B.2C.D.3
6、(4分)分式方程的解为( )
A.B.C.D.
7、(4分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为,点B的坐标为,点C在第一象限,对角线BD与x轴平行直线与x轴、y轴分别交于点E,将菱形ABCD沿x轴向左平移m个单位,当点D落在的内部时不包括三角形的边,m的值可能是
A.3B.4C.5D.6
8、(4分)一个多边形的内角和是外角和的4倍,则这个多边形的边数是( )
A.8B.9C.10D.11
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,若AC=8,BD=6,则该菱形的周长是___.
10、(4分)分解因式:m2﹣9m=_____.
11、(4分)如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是_________
(2,1)或(-2,-1)
12、(4分)在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、…,、、…在直线上,点、、…,在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、..,则的值为________.
13、(4分)若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)化简:
(1)
(2)(x﹣)÷
15、(8分)已知一次函数的图象如图所示,
(1)求的值;
(2)在同一坐标系内画出函数的图象;
(3)利用(2)中你所面的图象,写出时,的取值范围.
16、(8分).
17、(10分)如图,直线y=kx+b经过点A(0,5),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.
18、(10分)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.
(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y甲元,选择乙施工队所收的费用为Y乙元.请分别写出Y甲、Y乙、关于X的函数关系式;
(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?
(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.
20、(4分)如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是___cm.
21、(4分)平面直角坐标系内,点P(3,﹣4)到y轴的距离是_____.
22、(4分)在新年晚会的投飞镖游戏环节中,名同学的投掷成绩(单位:环)分别是:,,,,,,,则这组数据的众数是________.
23、(4分)样本容量为 80,共分为六组,前四个组的频数分别为 12,13,15,16,第五组的频率 是 0.1,那么第六组的频率是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:x(x﹣3)=1.
25、(10分)某同学参加“希望之星”英语口语大赛,7名评委给该同学的打分(单位:分)情况如下表:
(1)直接写出该同学所得分数的众数与中位数;
(2)计算该同学所得分数的平均数.
26、(12分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,1.
(1)这组数据的中位数是 ,众数是 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
直接利用完全平方公式化简进而得出a,b的值求出答案即可.
【详解】
解:∵=a+b,
∵a,b为有理数,
∴a=7,b=4,
∴a-b=7-4=1.
故选:A.
此题主要考查了实数运算,正确应用完全平方公式是解题关键.
2、C
【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
【详解】
解:∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选B.
本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
3、B
【解析】
先将括号内的数化简,再开根号,根据开方的结果为正数可得出答案.
【详解】
==2,
故选:B.
本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.
4、B
【解析】
设点B′的横坐标为x,然后根据△A′B′C与△ABC的位似比为2列式计算即可求解.
【详解】
设点B′的横坐标为x,
∵△ABC的边长放大到原来的2倍得到△A′B′C,点C的坐标是(-1,0),
∴x-(-1)=2[(-1)-(-1)],
即x+1=2(-1+1),
解得x=1,
所以点B的对应点B′的横坐标是1.
故选B.
本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.
5、C
【解析】
解析:∵△ABC是等边三角形P是∠ABC的平分线,
∴∠EBP=∠QBF=30°,
∵BF=2,FQ⊥BP,
∴BQ=BF•cs30°=2×=,
∵FQ是BP的垂直平分线,
∴BP=2BQ=2,
在Rt△BEF中,
∵∠EBP=30°,
∴PE=BP=.
故选C.
6、C
【解析】
观察可得最简公分母是x(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
方程的两边同乘x(x-1),得
1x-1=4x,
解得x=-1.
检验:当x=-1时,x(x-1)≠2.
∴原方程的解为:x=-1.
故选C.
本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.
7、C
【解析】
根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到MN上时的x的值,从而得到m的取值范围.
【详解】
∵菱形ABCD的顶点A(2,0),点B(1,0),
∴点D的坐标为(4,1),
当y=1时,x+3=1,
解得x=-2,
∴点D向左移动2+4=1时,点D在EF上,
∵点D落在△EOF的内部时(不包括三角形的边),
∴4<m<1.
∴m的值可能是5.
故选C
本题考查的是一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m的取值范围是解题的关键.
8、C
【解析】
利用多边形的内角和公式及外角和定理列方程即可解决问题.
【详解】
设这个多边形的边数是n,
则有(n-2)×180°=360°×4,
所有n=1.
故选C.
熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20
【解析】
根据菱形的对角线互相垂直及勾股定理即可求解.
【详解】
依题意可知BD⊥AC,AO=4,BO=3
∴AB==5,
∴菱形的周长为4×5=20
此题主要考查菱形的周长计算,解题的关键是熟知菱形的对角线垂直.
10、m(m﹣9)
【解析】
直接提取公因式m即可.
【详解】
解:原式=m(m﹣9).
故答案为:m(m﹣9)
此题主要考查了提公因式法分解因式,关键是正确找出公因式.
11、(2,1)或(-2,-1)
【解析】
如图所示:
∵A(6,3),B(6,0)两点,以坐标原点O为位似中心,相似比为,
∴A′、A″的坐标分别是A′(2,1),A″((﹣2,﹣1).
故答案为(2,1)或(﹣2,﹣1).
12、
【解析】
根据=,=,找出规律从而得解.
【详解】
解:
∵直线,当x=0时,y=1,当y=0时,x=﹣1,
∴OA1=1,OD=1,
∴∠ODA1=45°,
∴∠A2A1B1=45°,
∴A2B1=A1B1=1,
∴=,
∵A2B1=A1B1=1,
∴A2C1=2=,
∴=,
同理得:A3C2=4=,…,=,
∴=,
故答案为.
13、360
【解析】
根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
【详解】
∵△ABC中,AB=AC,
∴∠B=∠C,
∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k= ,
∴∠A:∠B=1:2,
即5∠A=180°,
∴∠A=36°,
故答案为:36°
此题考查等腰三角形的性质,三角形内角和定理,解题关键在于得到5∠A=180°
三、解答题(本大题共5个小题,共48分)
14、 (1);(2) x2+x.
【解析】
(1)根据分式的性质,结合完全平方公式和平方差公式化简即可;
(2)根据分式的性质,结合完全平方公式和平方差公式化简即可.
【详解】
解:(1)
=
=
= ;
(2)
=
=x(x+1)
=x2+x.
本题主要考查分式的化简,结合考查完全平方公式和平方差公式,应当熟练掌握.
15、(1);(2)详见解析;(3)
【解析】
(1)由图像可知A,B点的坐标,将点坐标代入一次函数表达式即可确定的值;(2)取直线与x轴,y轴的交点坐标,描点,连线即可;(3)时,的取值范围即直线在直线上方图像所对应的x的取值,由图像即可知.
【详解】
解:(1)由图像可知,,.
将,两点代入中,
得,解得.
(2)对于函数,
列表:
图象如图:
(3)由图象可得:当时,x的取值范围为:.
本题考查了一次函数的综合应用,确定函数k,b值,画函数图像,根据图像写不等式解集,熟练掌握一次函数的相关知识是解题的关键.
16、
【解析】
先根据平方差和完全平方公式化简,再进行加减运算即可.
【详解】
解:原式=
=
=
本题是对二次根式混合运算的考查,熟练掌握平方差和完全平方公式是解决本题的关键.
17、(1)y=﹣x+5;(2)点C的坐标为(1,2);(1)x≥1.
【解析】
(1)利用待定系数法求一次函数解析式解答即可;
(2)联立两直线解析式,解方程组即可得到点C的坐标;
(1)根据图形,找出点C左边的部分的x的取值范围即可.
【详解】
(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),
∴,
解方程组得,
∴直线AB的解析式为y=﹣x+5;
(2)∵直线y=2x﹣4与直线AB相交于点C,
∴解方程组,
解得,
∴点C的坐标为(1,2);
(1)由图可知,x≥1时,2x﹣4≥kx+b.
本题考查两条直线相交或平行问题,解题的关键是掌握一次函数与一元一次不等式和待定系数法求一次函数解析式.
18、(1)由题意,y甲=1000+20x,y乙=25x;(2)选择甲施工队所需费用较少 (3)见解析
【解析】
分析:(1)、根据题意总费用=每立方米费用乘以立方米数加上额外费用从而得出函数解析式;(2)、过A作AF⊥BC于F,根据直角三角形的面积计算法则得出土方的数量,然后分别求出两个施工队的费用,从而得出答案;(3)、根据不等式的性质求出答案.
详解:(1)由题意,y甲=1000+20x,y乙=25x;
(2)如图,过A作AF⊥BC于F,∵∠ABC=60°,AB=4,∴AF=6,
∴S△ABE=BE•AF=6,∴100米长的护坡土坝的土方的总量为6×100=600,
当x=600时,y甲=13000;y乙=15000,∴选择甲施工队所需费用较少;
(3)①当y甲=y乙,则1000+20x=25x,∴x=200,
②当x>200时,y甲<y乙;③当0<x<200时,y甲>y乙.
∴当100<x<200时,选择乙工程队;当x>200时,选择甲工程队;当x=200时,甲乙一样.
点睛:本题主要考查的是一次函数的实际应用以及不等式的应用,属于中等难度的题型.根据题意得出等量关系是解决这个问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先用平均数是3可得x的值,再结合方差公式计算即可.
【详解】
平均数是3(1+1+3+x+5),解得:x=4,
∴方差是S1[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]10=1.
故答案为1.
本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.
20、1
【解析】
根据角平分线上的点到角两边的距离相等可得点P到OB的距离等于点P到OA的距离,即点P到OB的距离等于PE的长度.
【详解】
解: ∵OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,
∴PE=PF=1cm
故答案为:1.
本题考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题关键.
21、3
【解析】
根据平面直角坐标系的特点,可知到y轴的距离为横坐标的绝对值,因此可知P点到y轴的距离为3.
故答案为3.
22、1
【解析】
直接利用众数的定义得出答案.
【详解】
∵7,1,1,4,1,8,8,中1出现的次数最多,
∴这组数据的众数是:1.
故答案为:1.
本题主要考查了众数的定义,解题的关键是掌握众数的定义:一组数据中,出现次数最多的数就叫这组数据的众数.
23、0.2.
【解析】
首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.
【详解】
解:根据题意得:第一组到第四组的频率之和是,又因为第五组的频率是 0.1,所以第六组的频率是.
故答案为0.2.
本题考查的是频率分布直方图,这类题目主要涉及以下三个计算公式:频率=频数÷样本容量,各组的频率之和为1,各组的频数之和=样本容量.
二、解答题(本大题共3个小题,共30分)
24、x2=2,x2=﹣2
【解析】
把方程化成一般形式,用十字相乘法因式分解求出方程的根.
【详解】
解:x2﹣3x﹣2=0
(x﹣2)(x+2)=0
x﹣2=0或x+2=0
∴x2=2,x2=﹣2.
本题考查了一元二次方程的解法,根据题目特点,可以灵活选择合适的方法进行解答,使计算变得简单.
25、(1)众数9.4,中位数9.1;(2)平均数9.1.
【解析】
(1)根据众数与中位数的定义求解即可;
(2)根据平均数的定义求解即可.
【详解】
(1)从小到大排列此数据为:9.1,9.2,9.1,9.1,9.4,9.4,9.4,
数据9.4出现了三次,最多,为众数,
9.1处在第4位为中位数;
(2)该同学所得分数的平均数为(9.1+9.2+9.1×2+9.4×1)÷7=9.1.
本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.
26、(1)16,17;(2)14;(3)2.
【解析】
(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;
(2)根据平均数的概念,将所有数的和除以10即可;
(3)用样本平均数估算总体的平均数.
【详解】
(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,
故答案为16,17;
(2)14,
答:这10位居民一周内使用共享单车的平均次数是14次;
(3)200×14=2
答:该小区居民一周内使用共享单车的总次数为2次.
本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.
题号
一
二
三
四
五
总分
得分
评委
评委1
评委2
评委3
评委4
评委5
评委6
评委7
打分
9.2
9.4
9.3
9.4
9.1
9.3
9.4
x
0
1
y
﹣2
0
贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题【含答案】: 这是一份贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
亳州市重点中学2025届数学九年级第一学期开学调研试题【含答案】: 这是一份亳州市重点中学2025届数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年长治市重点中学九年级数学第一学期开学调研试题【含答案】: 这是一份2024-2025学年长治市重点中学九年级数学第一学期开学调研试题【含答案】,共28页。试卷主要包含了选择题,四象限D.当时,随的增大而减小,解答题等内容,欢迎下载使用。