辽宁省北镇市第一初级中学2024-2025学年九年级数学第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)方程x2+x﹣12=0的两个根为( )
A.x1=﹣2,x2=6B.x1=﹣6,x2=2C.x1=﹣3,x2=4D.x1=﹣4,x2=3
2、(4分)如图,在Rt△ABC中,∠C=90°,BC=4,AB=6,点D是边BC上的动点,以AB为对角线的所有▱ADBE中,DE的最小值为( )
A.2B.4C.6D.2
3、(4分)对于一次函数y=-3x+2,①图象必经过点(-1,-1);②图象经过第一、二、四象限;③当x>1时,y<0;④y的值随着x值的增大而增大,以上结论正确的个数是( )
A.0个B.1个C.2个D.3个
4、(4分)观察下列图形,其中既是轴对称又是中心对称图形的是( )
A.B.C.D.
5、(4分)如图,在▱ABCD中,下列结论不一定正确的是( )
A.∠1=∠2B.∠1=∠3C.AB=CDD.∠BAD=∠BCD
6、(4分)如图,在平面直角坐标系中,点A1,A2,A3在直线y=x+b上,点B1,B2,B3在x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是( )
A.B.C.D.
7、(4分)化简的结果是( )
A.2B.C.D.
8、(4分)一组从小到大排列的数据:a,3,5,5,6(a为正整数),唯一的众数是5,则该组数据的平均数是( )
A.4.2或4B.4C.3.6或3.8D.3.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为 m?
10、(4分)一次函数的图象如图所示,不等式的解集为__________.
11、(4分)函数y=中,自变量x的取值范围是______.
12、(4分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为_____.
13、(4分)如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.
三、解答题(本大题共5个小题,共48分)
14、(12分)把一个足球垂直地面向上踢,(秒)后该足球的高度(米)适用公式.
(1)经多少秒时足球的高度为20米?
(2)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.
15、(8分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.
求证:BE=CF.
16、(8分)先阅读材料:
分解因式:.
解:令,
则
所以.
材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:
(1)分解因式:__________;
(2)分解因式:;
(3)证明:若为正整数,则式子的值一定是某个整数的平方.
17、(10分)我国南宋时期数学家秦九昭及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九昭公式:如果一个三角形的三条边分别为,记,那么三角形的面积为,请用此公式求解:在中,,,,求的面积.
18、(10分)在平面直角坐标系中,点的坐标为,点和点的坐标分别为,,且,四边形是矩形
(1)如图,当四边形为正方形时,求,的值;
(2)探究,当为何值时,菱形的对角线的长度最短,并求出的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知正方形,以为顶角,边为腰作等腰,连接,则__________.
20、(4分)一组数据:,则这组数据的方差是__________.
21、(4分)如图,为的中位线,,则________________.
22、(4分)已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____
23、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为40,则OH的长等于_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,试求两车的速度。
25、(10分)解方程:
26、(12分)某经销商从市场得知如下信息:
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.
(1)试写出y与x之间的函数关系式;
(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;
(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
利用因式分解法解方程即可得出结论.
【详解】
解:x2+x-12=0
(x+4)(x-1)=0,
则x+4=0,或x-1=0,
解得:x1=-4,x2=1.
故选:D.
本题考查因式分解法解一元二次方程,熟练掌握因式分解的方法是解题的关键.
2、D
【解析】
由条件可知BD∥AE,则可知当DE⊥BC时,DE有最小值,可证得四边ACDE为矩形,可求得答案.
【详解】
∵四边形ADBE为平行四边形,
∴AE∥BC,
∴当DE⊥BC时,DE有最小值,如图,
∵∠ACB=90°,
∴四边形ACDE为矩形,
∴DE=AC,
在Rt△ABC中,由勾股定理可求得AC==2,
∴DE的最小值为2,
故选:D.
本题主要考查平行四边形的性质和矩形的判定和性质,确定出DE取最小值时的位置是解题的关键.
3、B
【解析】
根据一次函数图象上点的坐标特征对①进行判断;根据一次函数的性质对②、④进行判断;利用x>1时,函数图象在y轴的左侧,y<1,则可对③进行判断.
【详解】
解:①、当x=-1时,y=-3x+2=5,则点(-1,-1)不在函数y=-3x+2的图象上,所以①选项错误;
②、k=-3<0,b=2>0,函数图象经过第一、二、四象限,所以②选项正确;
③、当x>1时,y<-1,所以③选项错误;
④、y随x的增大而减小,所以④选项错误.
故选:B.
本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
4、D
【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【详解】
A. 是中心对称图形,不是轴对称图形,选项不符合题意;
B. 是轴对称图形,不是中心对称图形,选项不符合题意;
C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;
D. 是中心对称图形,也是轴对称图形,选项符合题意,
故选D.
本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.
5、B
【解析】
由平行四边形的性质可得AB=CD,AB∥CD,∠BAD=∠BCD,由平行线的性质可得∠1=∠1.
【详解】
∵四边形ABCD是平行四边形
∴AB=CD,AB∥CD,∠BAD=∠BCD
∴∠1=∠1
故选B.
本题考查了平行四边形的性质,熟练运用平行四边形的性质是本题的关键.
6、D
【解析】
设点A2,A3,A4坐标,根据等腰直角三角形的性质、结合函数解析式,即可求解.
【详解】
解:∵A1(1,1)在直线y=x+b上,
∴b=,
∴y=x+.
设A2(x2,y2),A3(x3,y3),
则有 y2=x2+,y3=x3+.
又∵△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.
∴x2=2y1+y2,
x3=2y1+2y2+y3,
将点坐标依次代入直线解析式得到:
y2=y1+1
y3=y1+y2+1= y2
又∵y1=1
∴y2=,
y3=()2=,
∴点A3的纵坐标是,
故选:D.
此题主要考查了一次函数点坐标特点,以及等腰直角三角形斜边上高等于斜边长一半.解题的关键是找出点与直线之间的关系,进而求出点的坐标.
7、D
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
解:.
故选:D.
此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
8、A
【解析】
根据题意得出正整数a的值,再根据平均数的定义求解可得.
【详解】
解:∵数据:a,3,5,5,6(a为正整数),唯一的众数是5,
∴a=1或a=2,
当a=1时,平均数为:;
当a=2时,平均数为:;
故选:A.
本题主要考查了平均数的求法,根据数据是从小到大排列得出a的值是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:设小明、小刚新的速度分别是xm/s、ym/s,然后根据100s后两人相遇和两人到达终点的路程列出关于x、y的二元一次方程组,求解后再根据小明所跑的路程等于越野赛的全程列式计算即可得解.
试题解析:设小明、小刚新的速度分别是xm/s、ym/s,
由题意得
,
由①得,y=x+1.5③,
由②得,4y-3=6x④,
③代入④得,4x+6-3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=1m.
考点:一次函数的应用;二元一次方程组的应用.
10、
【解析】
首先根据直线与坐标轴的交点求解直线的解析式,在求解不等式即可.
【详解】
解:根据图象可得:
解得:
所以可得一次函数的直线方程为:
所以可得 ,解得:
故答案为
本题主要考查一次函数求解解析式,关键在于根据待定系数求解函数的解析式.
11、x≠1
【解析】
根据分母不能为零,可得答案.
【详解】
解:由题意,得x-1≠0,
解得x≠1,
故答案为:x≠1.
本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.
12、(,0)
【解析】
【分析】根据一次函数解析式求出点A、点B的坐标,再由中点坐标公式求出点C、点D的坐标,根据对称的性质找出点D关于x轴的对称点D′的坐标,结合C、D′的坐标求出直线CD′的解析式,令y=0求出x的值,从而得到点P的坐标.
【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,
如图,
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4),
令y=x+4中y=0,则x+4=0,解得:x=-6,
∴点A的坐标为(-6,0),
∵点C、D分别为线段AB、OB的中点,
∴点C(-3,2),点D(0,2),
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-2),
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(-3,2),D′(0,-2),
∴有,解得:,
∴直线CD′的解析式为y=-x-2,
令y=0,则0=-x-2,解得:x=-,
∴点P的坐标为(-,0),
故答案为(-,0).
【点睛】本题考查了待定系数法、一次函数以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式,解决此类问题时找点的坐标,常利用待定系数法求出函数解析式.
13、3或6
【解析】
对直角中那个角是直角分三种情况讨论,再由折叠的性质和勾股定理可BE的长.
【详解】
解:如图,若∠AEF=90°
∵∠B=∠BCD=90°=∠AEF
∴四边形BCFE是矩形
∵将ABEC沿着CE翻折
∴CB=CF
∵四边形BCFE是正方形
∴BE=BC-AD=6,
如图,若∠AFE=90°
∵将△BEC沿着CE翻折
∴CB=CF=6,∠B=∠EFC=90°,BE=EF
∵∠AFE+∠EFC=180°
∴点A,点F,点C三点共线
∴
∴AF=AC-CF=4
∵
∴
∴BE=3,
若∠EAF=90°,
∵CD=8> CF=6
∴点F不可能落在直线AD上
∴.不存在∠EAF=90
综上所述:BE=3或6
故答案为:3或6
本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)(2)小明说得对;
【解析】
(1)将代入公式,求出h=20时t的值即可得;
(2)将函数解析式配方成顶点式,由顶点式得出足球高度的最大值即可作出判断.
【详解】
(1)足球高度为20米,即,将代入公式得:
(移项整理成一般形式)
(等式两边同时除以5)
(配方)
∴
答:经过2秒时足球的高度为20米.
(2)小明说得对,理由如下:
∵h=20t-5t2=-5(t-2)2+20,
∴由-5<0知,当t=2时,h的最大值为20,不能达到21米,
故小明说得对.
本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质及将实际问题转化为二次函数问题的能力.
15、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可得∠CAD=∠BAD,由等量关系可得∠CAD=∠EAB,有SAS可证△ACF≌△ABE,再根据全等三角形的对应边相等即可得证.
试题解析:证明:∵AB=AC,点D是BC的中点,∴∠CAD=∠BAD.
又∵∠EAB=∠BAD,∴∠CAD=∠EAB.
在△ACF和△ABE中,∵AC=AB,∠CAF=∠BAE,AF=AE,∴△ACF≌△ABE(SAS),∴BE=CF.
点睛:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度中等,注意掌握数形结合思想的应用.
16、(1);(2);(3)证明见解析.
【解析】
(1)令,根据材料中的解题过程和完全平方公式因式分解即可;
(2)令,根据材料中的解题过程和完全平方公式因式分解即可;
(3)根据多项式乘多项式法则和完全平方公式因式分解,即可得出结论.
【详解】
解:(1)令,
则
所以.
(2)令,
则
,
所以.
(3)
.
∵是正整数,
∴也为正整数.
∴式子的值一定是某一个整数的平方.
此题考查的是因式分解,掌握利用“整体思想”和完全平方公式因式分解是解决此题的关键.
17、
【解析】
利用阅读材料,先计算出p的值,然后根据海伦公式计算△ABC的面积;
【详解】
解:,,,
,
.
考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.
18、见详解.
【解析】
(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;
(2)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.
【详解】
解:(1)如图1,过点D作DE⊥y轴于E,
∴∠AED=∠AOB=90°,
∴∠ADE+∠DAE=90°,
∵四边形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAE+∠BAO=90°,
∴∠ADE=∠BAO,
在△ABO和△ADE中,
,
∴△ABO≌△ADE,
∴DE=OA,AE=OB,
∵A(0,3),B(m,0),D(n,1),
∴OA=3,OB=m,OE=1,DE=n,
∴n=3,
∴OE=OA+AE=OA+OB=3+m=1,
∴m=1;
(2))如图3,由矩形的性质可知,BD=AC,
∴BD最小时,AC最小,
∵B(m,0),D(n,1),
∴当BD⊥x轴时,BD有最小值1,此时,m=n,
即:AC的最小值为1,
连接BD,AC交于点M,过点A作AE⊥BD于E,
由矩形的性质可知,DM=BM=BD=2,
∵A(0,3),D(n,1),
∴DE=1,
∴EM=DM-DE=1,
在Rt△AEM中,根据勾股定理得,AE=,
∴m=,即:
当m=时,矩形ABCD的对角线AC的长最短为1.
此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO≌△ADE,解(2)的关键是△ADE≌△CBF和△AOB∽△DEA,解(3)的关键是作出辅助线,是一道中考常考题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或
【解析】
分两种情况画图分析:点E在正方形内部和点E在正方形外部.设,再利用等腰三角形的性质以及三角形的内角和分别求解即可.
【详解】
解:如图1,设
如图2,设
,
故答案为:135°或45°.
本题考查了正方形的性质,等腰三角形的性质,分类讨论的数学思想,对点在正方形内部或外部进行讨论.解题关键是画出相应的图.
20、
【解析】
首先计算平均数,再根据方差的计算公式计算即可.
【详解】
解:平均数为:
方差为:
故答案为2.5
本题主要考查数据统计中的平均数和方差的计算,方差的计算是考试的必考题,必须熟练掌握.
21、50°
【解析】
根据三角形中位线定理可得EF∥AB,进而可求出∠EFC的度数.
【详解】
∵EF是中位线,
∴DE∥AB,
∴∠EFC=∠B=50°,
故答案为:50°.
本题考查了三角形中位线定理,解题的关键是熟记三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
22、-2
【解析】
由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.
【详解】
由已知得:,
解得:-<k<2.
∵k为整数,
∴k=-2.
故答案为:-2.
本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.
23、2
【解析】
首先求得菱形的边长,则OH是直角△AOD斜边上的中线,依据直角三角形的性质即可求解.
【详解】
AD=×40=1.
∵菱形ANCD中,AC⊥BD.
∴△AOD是直角三角形,
又∵H是AD的中点,
∴OH=AD=×1=2.
故答案是:2.
本题考查了菱形的性质和直角三角形的性质,直角三角形斜边上的中线等于斜边的一半.
二、解答题(本大题共3个小题,共30分)
24、解:设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,
x=16
经检验x=16是方程的解.
16×3=48
巴士的速度是16千米/小时,轿车的速度是48千米/小时.
【解析】设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,根据A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,可列方程求解.
25、(1);(2),
【解析】
(1)直接用因式分解法解方程即可;
(2)利用公式法解方程.
【详解】
解:(1)原方程分解因式得:
∴方程的解为:;
,
本题考查的知识点是解一元二次方程,掌握解一元二次方程的不同方法的步骤是解此题的关键.
26、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
(3)∵140>0,∴y随x的增大而增大.
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
题号
一
二
三
四
五
总分
得分
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
方案
A品牌(块)
B品牌(块)
①
48
52
②
49
51
③
50
50
河南省长葛市第一初级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】: 这是一份河南省长葛市第一初级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省盐城市第一初级中学数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省盐城市第一初级中学数学九年级第一学期开学达标测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年辽宁省北镇市第一初级中学数学九年级第一学期期末综合测试模拟试题含答案: 这是一份2023-2024学年辽宁省北镇市第一初级中学数学九年级第一学期期末综合测试模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,如图,过反比例函数,两三角形的相似比是2等内容,欢迎下载使用。