|试卷下载
终身会员
搜索
    上传资料 赚现金
    辽宁省大连金普新区五校联考2025届数学九上开学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    辽宁省大连金普新区五校联考2025届数学九上开学质量检测模拟试题【含答案】01
    辽宁省大连金普新区五校联考2025届数学九上开学质量检测模拟试题【含答案】02
    辽宁省大连金普新区五校联考2025届数学九上开学质量检测模拟试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省大连金普新区五校联考2025届数学九上开学质量检测模拟试题【含答案】

    展开
    这是一份辽宁省大连金普新区五校联考2025届数学九上开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是
    A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多
    C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱
    2、(4分)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )
    A.B.C.D.
    3、(4分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标( )
    A.(﹣3,4)B.(﹣2,3)C.(﹣5,4)D.(5,4)
    4、(4分)要使二次根式有意义,x必须满足( )
    A.x≤2B.x≥2C.x<2D.x>2
    5、(4分)已知□ABCD的周长为32,AB=4,则BC的长为( )
    A.4B.12C.24D.28
    6、(4分)已知直线,则下列说法中正确的是( )
    A.这条直线与轴交点在正半轴上,与轴交点在正半轴上
    B.这条直线与轴交点在正半轴上,与轴交点在负半轴上
    C.这条直线与轴交点在负半轴上,与轴交点在正半轴上
    D.这条直线与轴交点在负半轴上,与轴交点在负半轴上
    7、(4分)平面直角坐标系中,点A的坐标为,将线段OA绕原点O逆时针旋转得到,则点的坐标是
    A.B.C.D.
    8、(4分)我们知道正五边形不能进行平面镶嵌,若将三个全等的正五边形按如图所示拼接在一起,那么图中的∠1的度数是( )
    A.18°B.30°C.36°D.54°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,菱形ABCD的边长为2,点E,F分别是边AD,CD上的两个动点,且满足AE+CF=BD=2,设△BEF的面积为S,则S的取值范围是______.
    10、(4分)已知P1(1,y1),P2(2,y2)是正比例函数的图象上的两点,则y1 y2(填“>”或“<”或“=”).
    11、(4分)如果关于x的方程(m+2)x=8无解,那么m的取值范围是_____.
    12、(4分)点P的坐标为,则点P到x轴的距离是________,点P到y轴的距离是________.
    13、(4分)用反证法证明“如果,那么.”是真命题时,第一步应先假设________ .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)申思同学最近在网上看到如下信息:
    总书记明确指示,要重点打造北京非首都功能疏解集中承载地,在河北适合地段规划建设一座以新发展理念引领的现代新型城区.雄安新区不同于一般意义上的新区,其定位是重点承接北京疏解出的与去全国政治中心、文化中心、国际交往中心、科技创新中心无关的城市功能,包括行政事业单位、总部企业、金融机构、高等院校、科研院所等.右图是北京、天津、保定和雄安新区的大致交通图,其中保定、天津和雄安新区可近似看作在一条直线上.申思同学想根据图中信息求出北京和保定之间的大致距离.
    他先画出如图示意图,其中AC=AB=BC=100,点C在线段BD上,他把CD近似当作40,来求AD的长.
    请帮申思同学解决这个问题.
    15、(8分)当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.
    (1)若点E为完美点,且横坐标为2,则点E的纵坐标为 ;若点F为完美点,且横坐标为3,则点F的纵坐标为 ;
    (2)完美点P在直线 (填直线解析式)上;
    (3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.
    16、(8分)如图,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.点P从点A出发,以5cm/s的速度沿AC向终点C匀速移动.过点P作PQ⊥AB,垂足为点Q,以PQ为边作正方形PQMN,点M在AB边上,连接CN.设点P移动的时间为t(s).
    (1)PQ=______;(用含t的代数式表示)
    (2)当点N分别满足下列条件时,求出相应的t的值;①点C,N,M在同一条直线上;②点N落在BC边上;
    (3)当△PCN为等腰三角形时,求t的值.
    17、(10分)平面直角坐标系中,直线y=2kx-2k (k>0)交y轴于点B,与直线y=kx交于点A.
    (1)求点A的横坐标;
    (2)直接写出的x的取值范围;
    (3)若P(0,3)求PA+OA的最小值,并求此时k的值;
    (4)若C(0,2)以A,B,C,D为顶点的四边形是以BC为一条边的菱形,求k的值.
    18、(10分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠1.
    (1)求证:四边形ABCD是矩形;(1)若∠BOC=110°,AB=4cm,求四边形ABCD的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
    20、(4分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是_______.
    21、(4分)如图,在中,,点、、分别为、、的中点,若,则_________.
    22、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.
    23、(4分)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
    根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,直线y= x+b,分别交x轴,y轴于点A、C,点P是直线AC与双曲线y=在第一象限内的交点,过点P作PB⊥x轴于点B,若OB=2,PB=3.
    (1)填空:k= ;
    (2)求△ABC的面积;
    (3)求在第一象限内,当x取何值时,一次函数的值小于反比例函数的值?
    25、(10分)如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE
    (1)求证:ED平分∠AEB;
    (2)若AB=AC,∠A=38°,求∠F的度数.
    26、(12分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付.
    (1)张华用“微信”支付的概率是______.
    (2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”、“银行卡”、“现金”分别用字母“A”“B”“C”“D”代替)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
    B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
    C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;
    D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.
    综上即可得出结论.
    【详解】
    A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
    B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
    C、设当x≥25时,yA=kx+b,
    将(25,30)、(55,120)代入yA=kx+b,得:
    ,解得:,
    ∴yA=3x-45(x≥25),
    当x=35时,yA=3x-45=60>50,
    ∴每月上网时间为35h时,选择B方式最省钱,结论C正确;
    D、设当x≥50时,yB=mx+n,
    将(50,50)、(55,65)代入yB=mx+n,得:

    解得:,
    ∴yB=3x-100(x≥50),
    当x=70时,yB=3x-100=110<120,
    ∴结论D错误.
    故选D.
    本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.
    2、C
    【解析】
    观察可得,选项C中的图形与原图中的④、⑦图形不符,故选C.
    3、C
    【解析】
    利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
    【详解】
    解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,
    ∴AB=5,
    ∴DO=4,
    ∴点C的坐标是:(﹣5,4).
    故选C.
    此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.
    4、B
    【解析】
    试题分析:根据二次根式的意义可知二次根式有意义的条件是被开方数大于等于0,因此可得x-1≥0,解这个不等式可得x≥1.
    故选B
    考点:二次根式的意义
    5、B
    【解析】
    根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解
    【详解】
    ∵四边形ABCD是平行四边形
    ∴AB=CD,AD=BC
    ∵平行四边形ABCD的周长是32
    ∴2(AB+BC)=32
    ∴BC=12
    故正确答案为B
    此题主要考查平行四边形的性质
    6、C
    【解析】
    先确定直线y=kx+b经过第一、二、三限,即可对各选项进行判断.
    【详解】
    解:∵直线y=kx+b,k>0,b>0,
    ∴直线y=kx+b经过第一、二、三象限,
    故选:C.
    本题考查了一次函数与系数的关系:对于一次函数y=kx+b,它与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.
    7、A
    【解析】
    如图作轴于E,轴于利用全等三角形的性质即可解决问题;
    【详解】
    如图作轴于E,轴于F.
    则≌,
    ,,

    故选:A.
    本题考查坐标与图形变化、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    8、C
    【解析】
    正多边形镶嵌有三个条件限制:①边长相等;②顶点公共;③在一个顶点处各正多边形的内角之和为360°.多边形内角和定理:(n-2)•180 (n≥3)且n为整数).
    【详解】
    解:正五边形的内角:(5-2)×180°÷5=108°,
    ∴∠1=360°-108°×3=36°,
    故选:C.
    此题考查平面镶嵌,熟练运用多边形内角和公式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、≤S≤.
    【解析】
    先证明△BDE≌△BCF,再求出△BEF为正三角形即可解答.
    【详解】
    解:∵菱形ABCD的边长为2,BD=2,
    ∴△ABD和△BCD都为正三角形,
    ∴∠BDE=∠BCF=60°,BD=BC,
    ∵AE+DE=AD=2,而AE+CF=2,
    ∴DE=CF,
    ∴△BDE≌△BCF(SAS);
    ∴∠DBE=∠CBF,BE=BF,
    ∵∠DBC=∠DBF+∠CBF=60°,
    ∴∠DBF+∠DBE=60°即∠EBF=60°,
    ∴△BEF为正三角形;
    设BE=BF=EF=x,
    则S=•x•x•sin60°=x2,
    当BE⊥AD时,x最小=2×sin60°=,
    ∴S最小=×()2=,
    当BE与AB重合时,x最大=2,
    ∴S最大=×22=,
    ∴≤S≤.
    故答案为:≤S≤.
    本题考查三角形全等和几何的综合运用,找出表示面积的方法是解题关键.
    10、<.
    【解析】
    试题分析:∵正比例函数的,∴y随x的增大而增大.
    ∵,∴y1<y1.
    考点:正比例函数的性质.
    11、
    【解析】
    根据一元一次方程无解,则m+1=0,即可解答.
    【详解】
    解:∵关于的方程无解,
    ∴m+1=0,
    ∴m=−1,
    故答案为m=−1.
    本题考查了一元一次方程的解,根据题意得出关于m的方程是解题关键.
    12、2 1
    【解析】
    根据在平面直角坐标系中,任何一点到x轴的距离等于这一点纵坐标的绝对值,到y轴的距离等于这一点横坐标的绝对值,即可解答本题.
    【详解】
    解:点P的坐标为,则点P到x轴的距离是2,点P到y轴的距离是1.
    故答案为2;1.
    本题考查在平面直角坐标系中,点到坐标轴的距离,比较简单.
    13、a≥0
    【解析】
    用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.
    【详解】
    解: “如果,那么.”是真命题时 ,用反证法证明第一步应假设.
    故答案为:
    本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    试题分析:作,构造直角三角形,先求出DE和AE的长度,再根据勾股定理求得AD的长度.
    试题解析:
    作.
    ∵,
    ∴为等边三角形.
    ∵,
    ∴,,
    ∴,
    ∴.
    ∵中,

    ∵,
    ∴.
    ∵中,


    ∵,
    ∴.

    15、(1)1,2;(2)y=x﹣1;(3)△MBC的面积=.
    【解析】
    (1)把m=2和3分别代入m+n=mn,求出n即可;
    (2)求出两条直线的解析式,再把P点的坐标代入即可;
    (3)由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.
    【详解】
    (1)把m=2代入m+n=mn得:2+n=2n,
    解得:n=2,
    即==1,
    所以E的纵坐标为1;
    把m=3代入m+n=mn得:3+n=3n,
    解得:n=,
    即,
    所以F的纵坐标为2;
    故答案为:1,2;
    (2)设直线AB的解析式为y=kx+b,
    从图象可知:与x轴的交点坐标为(5,0)A(0,5),
    代入得:,
    解得:k=﹣1,b=5,
    即直线AB的解析式是y=﹣x+5,
    设直线BC的解析式为y=ax+c,
    从图象可知:与y轴的交点坐标为(0,﹣1),与x轴的交点坐标为(1,0),
    代入得:,
    解得:a=1,c=﹣1,
    即直线BC的解析式是y=x﹣1,
    ∵P(m,),m+n=mn且m,n是正实数,
    ∴除以n得:,即
    ∴P(m,m﹣1)即“完美点”P在直线y=x﹣1上;
    故答案为:y=x﹣1;
    (3)∵直线AB的解析式为:y=﹣x+5,直线BC的解析式为y=x﹣1,
    ∴,
    解得:,
    ∴B(3,2),
    ∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,
    ∴直线AM与直线y=x﹣1垂直,
    ∵点B是直线y=x﹣1与直线AM的交点,
    ∴垂足是点B,
    ∵点C是“完美点”,
    ∴点C在直线y=x﹣1上,
    ∴△MBC是直角三角形,
    ∵B(3,2),A(0,5),

    ∵,

    又∵,
    ∴BC=1,
    ∴S△MBC=.
    本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.
    16、(1)4t;(2)①,②;(3)秒或秒或秒.
    【解析】
    (1)先求出AB=50,sinA==,csA==,进而求出AQ=3t,PQ=4t,即可得出结论;
    (2)先判断出PN=QM=PQ=4t,
    ①求出CD=24,AD=18,进而判断出AQ+QM=AD=18,建立方程即可得出结论;
    ②判断出∠APQ=∠PNC,进而得出△AQP∽△PCN,建立方程即可得出结论;
    (3)分三种情况,利用等腰三角形的性质建立方程求解即可得出结论.
    【详解】
    解:(1)在Rt△ABC中,根据勾股定理得,AB=50,
    ∴sinA==,csA==
    ∵PQ⊥AB,
    ∴∠AQP=90°,
    由运动知,AP=5t,
    在Rt△AQP中,AQ=AP•csA=×5=3t,PQ=AP•sinA=4t,
    故答案为:4t;
    (2)由(1)知,AQ=3t,PQ=4t,
    ∵四边形PQMN是正方形,
    ∴PN=QM=PQ=4t,
    ①如图1,
    由(1)知,AB=50,
    过点C作CD⊥AB于D,
    ∴AB•CD=AC•BC,
    ∴CD=24,
    在Rt△ADQ中,AD==18,
    ∵点C,N,M在同一条直线上,
    ∴点M落在点D,
    ∴AQ+QM=AD=18,
    由(1)知,QM=PQ=4t,AQ=3t,
    ∴4t+3t=18,
    ∴t=;
    ②点N落在BC上时,∠PCN=∠PCB=90°=∠AQP,
    ∴∠CPN+∠CNP=90°,
    ∵∠QPN=90°
    ∴∠CPN+∠APQ=90°,
    ∴∠APQ=∠PNC,
    ∵∠AQP=∠PCN,
    ∴△AQP∽△PCN,
    ∴,
    ∴,
    ∴t=;
    (3)当PC=PN时,30-5t=4t,
    ∴t=,
    当PC=NC时,如图2,过点C作CF⊥PN于F,延长CF交AB于D,
    ∴PF=PN=2t,
    ∴QD=2t,
    根据勾股定理得,AQ==3t,
    ∴AD=AQ+QD=5t=18,
    ∴t=,
    当PN=NC时,如图3,过点N作NG⊥AC于G,
    ∴PG=PC=,
    易知,△PNG∽△APQ,
    ∴,
    ∴,
    ∴t=,
    即:当△PCN是等腰三角形时,秒或秒或秒.
    此题是四边形综合题,主要考查了正方形的性质,相似三角形的性质和判定,勾股定理,锐角三角函数,用方程的思想解决问题是解本题的关键.
    17、(1)点横坐标为2;(2);(3);(4)或.
    【解析】
    (1)联立两直线方程即可得出答案;
    (2)先根据图像求出k的取值范围,再解不等式组即可得出答案;
    (3)先求出点关于直线的对称点为的坐标,连接交直线于点,此时最小,根据将和P的坐标求出直线的解析式,再令x=2,求出y的值,即可得出点A的坐标,再将点A的坐标代入y=kx中即可得出答案;
    (4)根据题意得出△ABC为等腰三角形,且BC为腰,再根据A、B和C的坐标分别求出AB、BC和AC的长度,分情况进行讨论:①当时,②当时,即可得出答案.
    【详解】
    解:(1)根据题意得
    ,解得
    点横坐标为2;
    (2)由图像可知k>0
    ∴由2kx-2k>0,可得x>1;由2kx-2k
    (3)如图,点关于直线的对称点为;
    连接交直线于点,此时最小,
    其值为;
    设直线的解析式为y=ax+b
    将和P的坐标代入得:
    解得
    ∴直线的解析式为,
    当x=2时,y=
    .即,;
    (4)以为顶点的四边形是以为一条边的菱形,
    为等腰三角形,且为腰;
    或,
    ①当时,,,解得;
    ②当时,,,
    解得.

    本题考查的是一次函数的综合,难度较大,涉及到了三角形边的性质、两点间的距离公式和等腰三角形等相关知识点,需要熟练掌握.
    18、(1)详见解析;(1)
    【解析】
    (1)因为∠1=∠1,所以BO=CO,1BO=1CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;
    (1)在△BOC中,∠BOC=110°,则∠1=∠1=30°,AC=1AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.
    【详解】
    (1)证明:∵∠1=∠1,
    ∴BO=CO,即1BO=1CO.
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=OD,
    ∴AC=1CO,BD=1BO,
    ∴AC=BD.
    ∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形;
    (1)在△BOC中,∵∠BOC=110°,
    ∴∠1=∠1=(180°-110°)÷1=30°,
    ∴在Rt△ABC中,AC=1AB=1×4=8(cm),
    ∴BC=(cm).
    ∴四边形ABCD的面积=4(cm1)
    此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、20
    【解析】
    先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
    【详解】
    解:设y与x之间的函数关系式为y=kx+b,由函数图象,得

    解得: ,
    则y=﹣0.1x+1.
    当x=150时,
    y=﹣0.1×150+1=20(升).
    故答案为20
    本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
    20、1
    【解析】
    首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.
    【详解】
    第五组的频数是10×0.2=8,
    则第六组的频数是10-5-10-6-7-8=1.
    故答案是:1.
    本题是对频率、频数灵活运用的综合考查.
    注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.
    21、1
    【解析】
    根据直角三角形的性质求出AB,根据三角形中位线定理求出EF.
    【详解】
    解:∵∠ACB=90°,点D为AB的中点,
    ∴AB=2CD=16,
    ∵点E、F分别为AC、BC的中点,
    ∴EF=AB=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    22、1.1
    【解析】
    连接DF,由勾股定理求出AB=1,由等腰三角形的性质得出∠CAF =∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.
    【详解】
    连接DF,如图所示:
    在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,
    ∵AD=AC=3,AF⊥CD,
    ∴∠CAF =∠DAF,BD=AB-AD=2,
    在△ADF和△ACF中,
    ∴△ADF≌△ACF(SAS),
    ∴∠ADF=∠ACF=90°,CF=DF,
    ∴∠BDF=90°,
    设CF=DF=x,则BF=4-x,
    在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,
    即x2+22=(4-x)2,
    解得:x=1.1;
    ∴CF=1.1;
    故答案为1.1.
    本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.
    23、1.2
    【解析】
    仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.
    【详解】
    ∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,
    ∴该玉米种子发芽的概率为1.2,
    故答案为1.2.
    考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    二、解答题(本大题共3个小题,共30分)
    24、(1)6;(1)6;(3)0<x<1
    【解析】
    (1)∵PB⊥x轴于点B,OB=1,PB=3,
    ∴P(1,3),
    ∵点P是直线AC与双曲线y=在第一象限内的交点,
    ∴k=1×3=6,
    故答案为6;
    (1)∵直线y=x+b经过点P(1,3),
    ∴×1+b=3,
    ∴b=1,
    即y=x+1,
    令x=0,解得y=1,即C(0,1);
    令y=0,解得x=﹣4,即A(﹣4,0);
    ∴AB=6,CO=1,
    ∴S△ABC=×6×1=6;
    (3)由图象及点P的横坐标为1,可知:
    在第一象限内,一次函数的值小于反比例函数的值时,x的范围为0<x<1.
    25、(1)见解析;(2)∠F=19°.
    【解析】
    (1)利用等腰三角形的三线合一即可解决问题;
    (2)根据等腰三角形的性质可求出∠ABC的度数,根据等腰三角形“三线合一”的性质可证明∠BDF=90°.进而根据直角三角形两锐角互余的性质可求出∠F的度数.
    【详解】
    (1)∵∠A=∠ABE,
    ∴EA=EB,
    ∵AD=DB,
    ∴DE是∠AEB的平分线.
    (2)∵∠A=38°,AB=AC,
    ∴∠ABC=∠ACB=71°,
    ∵EA=EB,AD=DB,
    ∴ED⊥AB,
    ∴∠F=90°﹣∠ABC=19°.
    本题考查等腰三角形的性质及直角三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题关键.
    26、 (1);(2).
    【解析】
    (1)直接利用概率公式求解可得.
    (2)首先根据题意列表,然后列表求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.
    【详解】
    解:(1)张华用“微信”支付的概率是,
    故答案为:;
    (2)列表如下:
    由列表或树状图可知,共有16种结果,且每种结果的可能性相同,其中两人恰好选择同一种支付方式的有4种,
    故P(两人恰好选择同一种支付方式)=.
    此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
    题号





    总分
    得分
    种子粒数
    100
    400
    800
    1 000
    2 000
    5 000
    发芽种子粒数
    85
    318
    652
    793
    1 604
    4 005
    发芽频率
    0.850
    0.795
    0.815
    0.793
    0.802
    0.801
    A
    B
    C
    D
    A
    (A,A)
    (A,B)
    (A,C)
    (A,D)
    B
    (B,A)
    (B,B)
    (B,C)
    (B,D)
    C
    (C,A)
    (C,B)
    (C,C)
    (C,D)
    D
    (D,A)
    (D,B)
    (D,C)
    (D,D)
    相关试卷

    辽宁省大连金普新区五校联考2023年数学八年级第一学期期末检测试题【含解析】: 这是一份辽宁省大连金普新区五校联考2023年数学八年级第一学期期末检测试题【含解析】,共20页。

    辽宁省大连金普新区五校联考2023年数学八年级第一学期期末检测试题【含解析】: 这是一份辽宁省大连金普新区五校联考2023年数学八年级第一学期期末检测试题【含解析】,共20页。试卷主要包含了下列四个式子中能因式分解的是,下列结论正确的是等内容,欢迎下载使用。

    辽宁省大连金普新区五校联考2023-2024学年数学九年级第一学期期末联考试题含答案: 这是一份辽宁省大连金普新区五校联考2023-2024学年数学九年级第一学期期末联考试题含答案,共7页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map