辽宁省大连市沙河口区2024-2025学年九上数学开学统考试题【含答案】
展开
这是一份辽宁省大连市沙河口区2024-2025学年九上数学开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知反比例函数的图象过点M(-1,2),则此反比例函数的表达式为( )
A.y=B.y=-C.y=D.y=-
2、(4分)已知,则的值等于( )
A.6B.-6C.D.
3、(4分)如图所示,在直角中,,,,是边的垂直平分线,垂足为,交边于点,连接,则的周长为( )
A.16B.15C.14D.13
4、(4分)已知空气的单位质量是0.001239g/cm3,用科学记数法表示该数为( )
A.B.C.D.
5、(4分)如图,矩形中,对角线交于点,如果,那么度数是( )
A.B.
C.D.
6、(4分)如图,若要使▱ABCD成为矩形,需添加的条件是( )
A.AB=BCB.∠ABD=∠DBCC.AO=BOD.AC⊥BD
7、(4分)下列方程中,属于一元二次方程的是( )
A.B.C.D.
8、(4分)已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是( )
A.5B.7C.15D.17
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当x_____时,分式有意义.
10、(4分)在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.
11、(4分)如图,▱ABCD中,∠ABC=60°,AB=4,AD=8,点E,F分别是边BC,AD的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是______.
12、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.
13、(4分)若点A、B在函数的图象上,则与的大小关系是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图①,正方形的边长为,动点从点出发,在正方形的边上沿运动,设运动的时间为,点移动的路程为,与的函数图象如图②,请回答下列问题:
(1)点在上运动的时间为 ,在上运动的速度为
(2)设的面积为,求当点在上运动时,与之间的函数解析式;
(3)①下列图表示的面积与时间之间的函数图象是 .
②当 时,的面积为
15、(8分)如图,在△ABC中,E点是AC的中点,其中BD=2,DC=6,BC=2,AD=,求DE的长.
16、(8分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.
(1) ①依题意补全图形;
②求证:BE⊥AC.
(2)请探究线段BE,AD,CN所满足的等量关系,并证明你的结论.
(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).
17、(10分)如图,在中,分别平分和,交于点,线段相交于点M.
(1)求证:;
(2)若,则的值是__________.
18、(10分)如图,在平面直角坐标系中,函数的图象经过点A(1,4)和点B,过点A作AC⊥x轴,垂足为点C,过点B作BD⊥y轴,垂足为点D,连结AB、BC、DC、DA,点B的横坐标为a(a>1)
(1)求k的值
(2)若△ABD的面积为4;
①求点B的坐标,
②在平面内存在点E,使得以点A、B、C、E为顶点的四边形是平行四边形,直接写出符合条件的所有点E的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.
20、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为____;若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.
21、(4分)如图,在平面直角坐标系xOy中,函数y1的图象与直线y1=x+1交于点A(1,a).则:
(1)k的值为______;
(1)当x满足______时,y1>y1.
22、(4分)如图,两张等宽的纸条交叉叠放在一起,在重叠部分构成的四边形ABCD中,若AB=10,AC=12,则BD的长为_____.
23、(4分)在一次函数y=(2﹣m)x+1中,y随x的增大而减小,则m的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商店计划购进,两种型号的电机,其中每台型电机的进价比型多元,且用元购进型电机的数量与用元购进型电机的数量相等.
(1)求,两种型号电机的进价;
(2)该商店打算用不超过元的资金购进,两种型号的电机共台,至少需要购进多少台型电机?
25、(10分)某服装制造厂要在开学前赶制3000套服装,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?
26、(12分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG=BE且DG⊥BE,请你给出证明.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
函数经过一定点,将此点坐标代入函数解析式y=(k≠0),即可求得k的值.
【详解】
设反比例函数的解析式为y=(k≠0).
∵该函数的图象过点M(−1,2),
∴2=,
得k=−2.
∴反比例函数解析式为y=-.故选B.
本题考查了待定系数法求反比例函数解析式,解题的关键是掌握待定系数法求反比例函数解析式的方法和步骤.
2、A
【解析】
由已知可以得到a-b=-4ab,把这个式子代入所要求的式子,化简就得到所求式子的值是6,故选A
3、A
【解析】
首先连接AE,由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,又由DE是AB边的垂直平分线,根据线段垂直平分线的性质,即可得AE=BE,继而可得△ACE的周长为:BC+AC.
【详解】
连接AE,
∵在Rt△ABC中,∠BAC=90∘,AB=8,AC=6,
∴BC=
∵DE是AB边的垂直平分线,
∴AE=BE,
∴△ACE的周长为:AE+EC+AC=BE+CE+AC=BC+AC=10+6=16,
故选A.
本题考查勾股定理,熟练掌握勾股定理的性质是解题关键.
4、C
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.001219=1.219×10-1.
故选:C.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
5、C
【解析】
只要证明OA=OD,根据三角形的外角的性质即可解决问题.
【详解】
解:∵四边形ABCD是矩形,
∴OA=AC,OD=BD,AC=BD,
∴OA=OB,
∴∠OAD=∠ODA=30°,
∵∠AOB=∠OAD+∠ODA=60°.
故选:C.
本题考查矩形的性质、等腰三角形的性质,三角形外角的性质等知识,解题的关键是根据矩形的性质得出OA=OB.
6、C
【解析】
根据矩形的判定定理①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形,逐一判断即可.
【详解】
解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;
B、∵四边形ABCD是平行四边形,∠ABD=∠DBC,得出四边形ABCD是菱形,不是矩形;故本选项错误;
C、∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AO=BO,
∴OA=OC=OB=OD,
即AC=BD,
∴平行四边形ABCD是矩形,故本选项正确;
D、∵四边形ABCD是平行四边形,AC⊥BD,
∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;
故选:C.
本题考查的是平行四边形ABCD成为矩形的条件,熟练掌握这些条件是解题的关键.
7、B
【解析】
利用一元二次方程的定义对选项进行判断即可.
【详解】
解:A、2x﹣1=3x是一元一次方程,不符合题意;
B、x2=4是一元二次方程,符合题意;
C、x2+3y+1=0是二元二次方程,不符合题意;
D、x3+1=x是一元三次方程,不符合题意,
故选:B.
此题考查一元二次方程的定义,熟练掌握方程的定义是解本题的关键.
8、D
【解析】
试题分析:先根据算术平均数的定义求出x1+x2+x3的值,进而可得出结论.
解:∵x1,x2,x3的平均数是5,
∴x1+x2+x3=15,
∴===1.
故选D.
考点:算术平均数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、≠.
【解析】
要使分式有意义,分式的分母不能为1.
【详解】
因为4x+5≠1,所以x≠-.
故答案为≠−.
解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.
10、
【解析】
利用勾股定理可用m表示出OB的长,根据平方的非负数性质即可得答案.
【详解】
∵点B的坐标是(m,m-4),
∴OB==,
∵(m-2)2≥0,
∴2(m-2)2+8≥8,
∴的最小值为=,即OB的最小值为,
故答案为:
本题考查勾股定理的应用及平方的非负数性质,熟练掌握平方的非负数性质是解题关键.
11、4+4
【解析】
连接EF,点E、F分别是边BC、AD边的中点,可知BE=AF=AB=4,可证四边形ABEF为菱形,根据菱形的性质可知AE⊥BF,且AE与BF互相平分,∠ABC=60°,△ABE为等边三角形,ME=F=4,由勾股定理求MF,根据菱形的性质可证四边形MENF为矩形,再求四边形ENFM的周长.
解:连接EF,
∵点E、F分别是边BC、AD边的中点,
∴BE=AF=AB=4,
又AF∥BE,
∴四边形ABEF为菱形,由菱形的性质,得AE⊥BF,且AE与BF互相平分,
∵∠ABC=60°,∴△ABE为等边三角形,ME=F=4,
在Rt△MEF中,由勾股定理,得MF=,
由菱形的性质,可知四边形MENF为矩形,
∴四边形ENFM的周长=2(ME+MF)=4+4.
故答案为4+4
12、①②③④
【解析】
首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.
【详解】
∵△ABD和△ACE都是等边三角形,
∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.
∵F是AB的中点,
∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.
∵∠BAC=30°,∠ACB=90°,AD=2AF.
∴BC=AB,∠ADF=∠BAC,
∴AF=BF=BC.
在Rt△ADF和Rt△BAC中
AD=BA ,AF=BC,
∴Rt△ADF≌Rt△BAC(HL),
∴DF=AC,
∴AE=DF.
∵∠BAC=30°,
∴∠BAC+∠CAE=∠BAE=90°,
∴∠DFA=∠EAB,
∴DF∥AE,
∴四边形ADFE是平行四边形,故②正确;
∴AD=EF,AD∥EF,
设AC交EF于点H,
∴∠DAC=∠AHE.
∵∠DAC=∠DAB+∠BAC=90°,
∴∠AHE=90°,
∴EF⊥AC.①正确;
∵四边形ADFE是平行四边形,
∴2GF=2GA=AF.
∴AD=4AG.故③正确.
在Rt△DBF和Rt△EFA中
BD=FE,DF=EA,
∴Rt△DBF≌Rt△EFA(HL).故④正确,
故答案为:①②③④.
本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.
13、
【解析】
将点A、B分别代入函数解析式中,求出m、n的值,再比较与的大小关系即可.
【详解】
点A、B分别代入函数解析式中
解得
∵
∴
故答案为:.
本题考查了一次函数的问题,掌握一次函数的性质和代入求值法是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)6,2;(2);(3)①C;②4或1.
【解析】
(1)由图象得:点P在AB上运动的时间为6s,在CD上运动的速度为6÷(15-12)=2(cm/s);
(2)当点P在CD上运动时,由题意得:PC=2(t-12),得出PD=30-2t,由三角形面积公式即可得出答案;
(3)①当点P在AB上运动时,y与t之间的函数解析式为y=3t;当点P在BC上运动时,y与t之间的函数解析式为y=18;当点P在CD上运动时,y与t之间的函数解析式为y=-6t+90,即可得出答案;
②由题意分两种情况,即可得出结果.
【详解】
(1)由题意得:点在上运动的时间为,
在上运动的速度为;
故答案为:6,2;
(2)当点在上运动时,
由题意得:,
,
的面积为,
即与之间的函数解析式为;
(3)①当点在上运动时,与之间的函数解析式为;
当点在上运动时,与之间的函数解析式为;
当点在上运动时,与之间的函数解析式为,
表示的面积与时间之间的函数图象是,
故答案为:;
②由题意得:当时,;
当时,;
即当或时,的面积为;
故答案为:4或1.
本题是四边形综合题目,考查了正方形的性质、函数与图象、三角形面积公式、分类讨论等知识;本题综合性强,熟练掌握正方形的性质和函数与图象是解题的关键.
15、
【解析】
根据勾股定理的逆定理求出∠BDC=90°,求出线段AC长,根据直角三角形斜边上中线性质求出即可.
【详解】
∵BD2+CD2=22+62=(2)2=BC2,
∴△BDC为直角三角形,∠BDC=90°,
在Rt△ADC中,∵CD=6,AD=2,
∴AC2=(2)2+62=60,
∴AC=2,
∵E点为AC的中点,
∴DE=AC=.
本题考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出△ADC是直角三角形是解此题的关键.
16、(1)①补图见解析;②证明见解析;(2)2BE=AD+CN,证明见解析;(3).
【解析】
分析:(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;
(2)BE=AD+CN.根据正方形的性质可得出BF=AD,再结合三角形的中位线性质可得出EF=CN,由线段间的关系即可证出结论;
(3)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.
详解:(1)①依题意补全图形,如图1所示.
②证明:连接CE,如图2所示.
∵四边形ABCD是正方形,
∴∠BCD=90°,AB=BC,
∴∠ACB=∠ACD=∠BCD=45°,
∵∠CMN=90°,CM=MN,
∴∠MCN=45°,
∴∠ACN=∠ACD+∠MCN=90°.
∵在Rt△ACN中,点E是AN中点,
∴AE=CE=AN.
∵AE=CE,AB=CB,
∴点B,E在AC的垂直平分线上,
∴BE垂直平分AC,
∴BE⊥AC.
(2)BE=AD+CN.
证明:∵AB=BC,∠ABE=∠CBE,
∴AF=FC.
∵点E是AN中点,
∴AE=EN,
∴FE是△ACN的中位线.
∴FE=CN.
∵BE⊥AC,
∴∠BFC=90°,
∴∠FBC+∠FCB=90°.
∵∠FCB=45°,
∴∠FBC=45°,
∴∠FCB=∠FBC,
∴BF=CF.
在Rt△BCF中,BF2+CF2=BC2,
∴BF=BC.
∵四边形ABCD是正方形,
∴BC=AD,
∴BF=AD.
∵BE=BF+FE,
∴BE=AD+CN.
(3)在点M沿着线段CD从点C运动到点D的过程中,线段EN所扫过的图形为四边形DFCN.
∵∠BDC=45°,∠DCN=45°,
∴BD∥CN,
∴四边形DFCN为梯形.
∵AB=1,
∴CF=DF=BD=,CN=CD=,
∴S梯形DFCN=(DF+CN)•CF=(+)×=.
点睛:本题考查了正方形的性质、等腰直角三角形的性质、平行线的性质以及梯形的面积公式,解题的关键是:(1)根据垂直平分线上点的性质证出垂直;(2)用AD表示出EF、BF的长度;(3)找出EN所扫过的图形.本题属于中档题,难度不小,解决该题型题目时,根据题意画出图形,利用数形结合解决问题是关键.
17、(1)略;(2);
【解析】
(1)想办法证明∠BAE+∠ABF=10°,即可推出∠AMB=10°即AE⊥BF;
(2)证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,证出DE=CF,得出DF=CE,由已知得出BC=AD=5EF,DE=5EF,求出DF=CE=4EF,得出AB=CD=1EF,即可得出结果.
【详解】
(1)证明:∵在平行四边形ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°,
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF,
∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=10°,
∴∠AMB=10°,
∴AE⊥BF;
(2)解:∵在平行四边形ABCD中,CD∥AB,
∴∠DEA=∠EAB,
又∵AE平分∠DAB,
∴∠DAE=∠EAB,
∴∠DEA=∠DAE,
∴DE=AD,同理可得,CF=BC,
又∵在平行四边形ABCD中,AD=BC,
∴DE=CF,
∴DF=CE,
∵EF=AD,
∴BC=AD=5EF,
∴DE=5EF,
∴DF=CE=4EF,
∴AB=CD=1EF,
∴BC:AB=5:1;
故答案为5:1.
本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
18、(1)1;(2)①(3,),②(3, );(3, );(3,- )
【解析】
(1)由点A的坐标,利用反比例函数图象上点的坐标特征可求出k值;
(2)①设AC,BD交于点M,利用反比例函数图象上点的坐标特征可得出点B的坐标,结合AC⊥x轴,BD⊥y轴可得出BD,AM的长,利用三角形的面积公式结合△ABD的面积为1可求出a的值,进而可得出点B的坐标;
②设点E的坐标为(m,n),分AB为对角线、AC为对角线以及BC为对角线三种情况考虑,利用平行四边形的性质(对角线互相平分)可得出关于m,n的二元一次方程组,解之即可得出点E的坐标.
【详解】
解:(1)∵函数y=(x>0)的图象经过点A(1,1),
∴k=1×1=1.
(2)①设AC,BD交于点M,如图1所示.
∵点B的横坐标为a(a>1),点B在y=的图象上,
∴点B的坐标为(a,).
∵AC⊥x轴,BD⊥y轴,
∴BD=a,AM=AC-CM=1-.
∵△ABD的面积为1,
∴BD•AM=1,即a(1-)=8,
∴a=3,
∴点B的坐标为(3,)
②存在,设点E的坐标为(m,n).
分三种情况考虑,如图2所示.
(i)当AB为对角线时,∵A(1,1),B(3,),C(1,0),
∴ ,解得:,
∴点E1的坐标为(3, );
(ii)当AC为对角线时,∵A(1,1),B(3,),C(1,0),
∴ ,解得:,
∴点E2的坐标为(3, );
(iii)当BC为对角线时,∵A(1,1),B(3,),C(1,0),
∴ ,解得:,
∴点E2的坐标为(3,- ).
综上所述:点E的坐标为(3, );(3, );(3,- ).
本题考查了反比例函数图象上点的坐标特征、三角形的面积以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)①利用三角形的面积公式结合△ABD的面积为1,求出a的值;②分AB为对角线、AC为对角线以及BC为对角线三种情况,利用平行四边形的对角线互相平分求出点E的坐标.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA
【解析】
根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;
根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;
根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.
故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.
20、 (1,1) (-1,-1).
【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.
【详解】
∵菱形OABC的顶点O(0,0),B(2,2),得
∴D点坐标为(1,1).
∵每秒旋转45°,
∴第60秒旋转45°×60=2700°,
2700°÷360°=7.5周,即OD旋转了7周半,
∴菱形的对角线交点D的坐标为(-1,-1),
故答案为:(1,1);(-1,-1)
本题考查了旋转的性质及菱形的性质,利用旋转的性质得出OD旋转的周数是解题关键.
21、2; x<﹣2或0<x<2.
【解析】
(2)将A点坐标分别代入两个解析式,可求k;
(2)由两个解析式组成方程组,求出交点,通过图象可得解.
【详解】
(2)∵函数y2的图象与直线y2=x+2交于点A(2,a),
∴a=2+2=2,
∴A(2,2),
∴2,
∴k=2,
故答案为:2;
(2)∵函数y2的图象与直线y2=x+2相交,
∴x+2,
∴x2=2,x2=﹣2,
∵y2>y2,∴x<﹣2或0<x<2,
故答案为:x<﹣2或0<x<2.
本题考查了反比例函数与一次函数的交点问题,待定系数法,关键是熟练利用图象表达意义解决问题.
22、1
【解析】
过点作于,于,设、交点为,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得的长,从而可得到的长.
【详解】
解:过点作于,于,设、交点为.
两条纸条宽度相同,
.
,,
四边形是平行四边形.
.
又.
,
四边形是菱形;
,,.
.
.
故答案为1.
本题考查了菱形的判定与性质、平行四边形的判定与性质、勾股定理以及四边形的面积,证得四边形为菱形是解题的关键.
23、m>1.
【解析】
根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.
【详解】
∵一次函数y=(1﹣m)x+1的函数值y随x的增大而减小,∴1﹣m<0,∴m>1.
故答案为m>1.
本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小.
二、解答题(本大题共3个小题,共30分)
24、(1)进价元,进价元;(2)购进型至少台
【解析】
(1) 设进价为元,则进价为元,根据元购进型电机的数量与用元购进型电机的数量相等,即可得出关于x的分式方程,解分式方程经检验后即可得出结论;
(2) 设购进型台,则购进型台,根据用不超过元的资金购进,两种型号的电机共台,即可得出关于y的一元一次不等式,解不等式即可得出结论.
【详解】
(1)解:设进价为元,则进价为元,
解得:
经检验是原分式方程的解
进价元,进价元.
(2)设购进型台,则购进型台.
购进型至少台.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,正确列出分式方程.
25、原计划每天能完成125套.
【解析】
试题解析:
设原计划每天能完成套衣服,由题意得
解得:
经检验,是原分式方程的解.
答:原计划每天能完成125套.
26、 (1)证明见解析;(2)S△ADG=1+.
【解析】
(1)利用正方形得到条件,判断出△ADG≌△ABE,根据全等三角形的性质即可得到结论;
(2)利用正方形的性质在Rt△AMD中,∠MDA=45°,AD=2从而得出AM=DM=,在Rt△AMG中,AM2+GM2=AG2从而得出GM=即可.
【详解】
(1)解:如图1,延长EB交DG于点H,
∵四边形ABCD与四边形AEFG是正方形,
∴AD=AB,∠DAG=∠BAE=90°,AG=AE
在△ADG与△ABE中,
∴△ADG≌△ABE(SAS),
∴∠AGD=∠AEB,
∵△ADG中∠AGD+∠ADG=90°,
∴∠AEB+∠ADG=90°,
∵△DEH中,∠AEB+∠ADG+∠DHE=180°,
∴∠DHE=90°,
∴DG⊥BE.
(2)解:如图2,过点A作AM⊥DG交DG于点M,
∠AMD=∠AMG=90°,
∵BD是正方形ABCD的对角,
∴∠MDA=45°
在Rt△AMD中,∵∠MDA=45°,AD=2,
∴AM=DM=,
在Rt△AMG中,
∵AM2+GM2=AG2,
∴GM=,
∵DG=DM+GM=,
∴S△ADG==1+.
此题考查了旋转的性质和正方形的性质,用到的知识点是旋转的性质、全等三角形的判定,勾股定理和正方形的性质,关键是根据题意画出辅助线,构造直角三角形.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份辽宁省沈阳市实验北2024-2025学年九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省大连市中学山区2025届九上数学开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省大连市高新园区2024年数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。