辽宁省盘锦地区2025届九年级数学第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,点P(﹣3,4)关于y轴对称点的坐标为( )
A.(﹣3,4)B.(3,4)C.(3,﹣4)D.(﹣3,﹣4)
2、(4分)如图,△ABC顶点C的坐标是(1,-3),过点C作AB边上的高线CD,则垂足D点坐标为( )
A.(1,0)B.(0,1)
C.(-3,0)D.(0,-3)
3、(4分)已知四边形是平行四边形,下列结论中不正确的是( )
A.当时,它是菱形B.当时,它是菱形
C.当时,它是矩形D.当时,它是正方形
4、(4分)如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,则∠DEB=60°;其中正确结论的个数是( )
A.4B.3C.2D.1
5、(4分)下列事件中,是必然事件的是( )
A.3天内下雨B.打开电视机,正在播放广告
C.367人中至少有2人公历生日相同D.a抛掷1个均匀的骰子,出现4点向上
6、(4分)下列式子中,属于最简二次根式的是( )
A.B.C.D.
7、(4分)如图,四边形ABCD为菱形,AB=5,BD=8,AE⊥CD于E,则AE的长为( )
A.B.C.D.
8、(4分)已知:中,,求证:,下面写出可运用反证法证明这个命题的四个步骤:
①∴,这与三角形内角和为矛盾,②因此假设不成立.∴,③假设在中,,④由,得,即.这四个步骤正确的顺序应是( )
A.③④②①B.③④①②C.①②③④D.④③①②
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.
10、(4分)如图,以的两条直角边分别向外作等腰直角三角形.若斜边,则图中阴影部分的面积为_____.
11、(4分)矩形的两条对角线的夹角为,较短的边长为,则对角线长为________.
12、(4分)一个多边形的内角和是它外角和的1.5倍,那么这个多边形是______边形.
13、(4分)如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连接DE,取DE的中点F,连接EO并延长交CD于点G.若BE=3CG,OF=2,则线段AE的长是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.
(1)求点A、B、C的坐标;
(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.
15、(8分)如图,大拇指与小指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得指距与身高的一组数据:
(1)求出h与d之间的函数关系式;
(2)某人身高为196cm,一般情况下他的指距应是多少?
16、(8分)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.
(1)求证:△ADE≌△FCE;
(2)若AB=2BC,∠F=36°,求∠B的度数.
17、(10分)已知x=,y=,求下列各式的值:
(1)x2-xy+y2;
(2).
18、(10分)如图,AC为矩形ABCD的对角线,DE⊥AC于E,BF⊥AC于F。
求证:DE=BF
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一次函数和函数,当时,x的取值范围是______________.
20、(4分)如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.
21、(4分)分解因式:__________.
22、(4分)如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.
23、(4分)如图,△ABC 中,AB=BC=12cm,D、E、F 分别是 BC、AC、AB 边上的中点,则四边形 BDEF 的周长是__________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.
(1)求OB的长度;
(2)设DP= x,CQ= y,求y与x的函数表达式(不要求写自变量的取值范围);
(3)若OCQ是等腰三角形,求CQ的长度.
25、(10分)某工厂车间为了了解工人日均生产能力的情况,随机抽取10名工人进行测试,将获得数据制成如下统计图.
(1)求这10名工人的日均生产件数的平均数、众数、中位数;
(2)若日均生产件数不低于12件为优秀等级,该工厂车间共有工人120人,估计日均生产能力为“优秀”等级的工人约为多少人?
26、(12分)如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).
(1)只用直尺(没有刻度)和圆规按下列要求作图.
(要求:保留作图痕迹,不必写出作法)
Ⅰ)AC⊥y轴,垂足为C;
Ⅱ)连结AO,AB,设边AB,CO交点E.
(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
解:点P(﹣3,4)关于y轴对称点的坐标为(3,4).
故选:B.
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
2、A
【解析】
根据在同一平面内,垂直于同一直线的两直线平行可得CD∥y轴,再根据平行于y轴上的点的横坐标相同解答.
【详解】
如图,
∵CD⊥x轴,
∴CD∥y轴,
∵点C的坐标是(1,-3),
∴点D的横坐标为1,
∵点D在x轴上,
∴点D的纵坐标为0,
∴点D的坐标为(1,0).
故选:A.
本题考查了坐标与图形性质,比较简单,作出图形更形象直观.
3、D
【解析】
根据特殊平行四边形的判定方法判断即可.
【详解】
解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.
故答案为:D
本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.
4、A
【解析】
由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.
【详解】
∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,
∴△ABC≌△ADE,
∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;
∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,
∴∠EAC=∠DAB;故②正确;
∵AE=AC,
∴∠AEC=∠C,
∴∠AEC=∠AED,
∴EA平分∠DEC;故③正确;
∵DE∥AC,
∴∠C=∠BED,
∵∠AEC=∠AED=∠C,
∴∠DEB=∠AEC=∠AED =60°,故④正确;
综上所述:正确的结论是①②③④,共4个,
故选:A.
本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.
5、C
【解析】
根据随机事件和必然事件的定义分别进行判断.
【详解】
A. 3天内会下雨为随机事件,所以A选项错误;
B. 打开电视机,正在播放广告,是随机事件,所以B选项错误;
C. 367人中至少有2人公历生日相同是必然事件,所以C选项正确;
D. a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.
故选C.
此题考查随机事件,解题关键在于掌握其定义.
6、B
【解析】
根据最简二次根式的定义判断即可.
【详解】
解:A、,不是最简二次根式,故A选项错误;
B、是最简二次根式,故B选项正确;
C、,不是最简二次根式,故C选项错误;
D、,不是最简二次根式,故D选项错误.
此题考查最简二次根式问题,在判断最简二次根式的过程中要注意:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.
7、C
【解析】
分析:利用勾股定理求出对角线AC的长,再根据S菱形ABCD=•BD•AC=CD•AE,求出AE即可.
详解:∵四边形ABCD是菱形,
∴AB=CD=5,AC⊥BD,OB=OB=4,OA=OC,
在Rt△AOB中,∵AB=5,OB=4,
∴OA===3,
∴AC=6,
∴S菱形ABCD=⋅BD⋅AC=CD⋅AE,
∴AE=,
故选C.
点睛:本题考查了菱形的性质、勾股定理等知识,解题的关键是学会利用面积法求菱形的高,属于中考常考题型.
8、B
【解析】
根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.
【详解】
题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:
应该为:(1)假设∠B≥90°,
(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,
(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,
(4)因此假设不成立.∴∠B<90°,
原题正确顺序为:③④①②,
故选B.
本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
试题解析:∵菱形ABCD的对角线AC=6,BD=8,
∴菱形的面积S=AC•BD=×8×6=1.
考点:菱形的性质.
10、
【解析】
根据勾股定理和等腰直角三角形的面积公式,即可得到结论.
【详解】
解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
S阴影=(AC2+BC2)=×25=,
故答案为.
本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
11、1
【解析】
分析:根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.
详解:如图:
AB=12cm,∠AOB=60°.
∵四边形是矩形,AC,BD是对角线.
∴OA=OB=OD=OC=BD=AC.
在△AOB中,OA=OB,∠AOB=60°.
∴OA=OB=AB=12cm,BD=2OB=2×12=1cm.
故答案为1.
点睛:矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.
12、五
【解析】
设多边形边数为n.
则360°×1.5=(n−2)⋅180°,
解得n=5.
故选C.
点睛:多边形的外角和是360度,多边形的内角和是它的外角和的1.5倍,则多边形的内角和是540度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.
13、.
【解析】
已知点O是对角线AC的中点,DE的中点为F,可得OF为△EDG的中位线,根据三角形的中位线定理可得DG=2OF=4;由平行四边形的性质可得AB∥CD,AB=CD,即可得∠EAO=∠GCO,再判定△AOE≌△COG,根据全等三角形的性质可得AE=CG,即可得BE=DG=4,再由BE=3CG即可求得AE=CG=.
【详解】
∵点O是对角线AC的中点,DE的中点为F,
∴OF为△EDG的中位线,
∴DG=2OF=4;
∵四边形ABCD为平行四边形,
∴AB∥CD,AB=CD,
∴∠EAO=∠GCO,
在△AOE和△COG中,
,
∴△AOE≌△COG,
∴AE=CG,
∵AB=CD,
∴BE=DG=4,
∵BE=3CG,
∴AE=CG=.
故答案为:.
本题考查了平行四边形的性质、三角形的中位线定理,利用三角形的中位线定理求得DG=4;是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)或
【解析】
(1)首先根据一次函数的解析式即可得出A,B的坐标,然后利用勾股定理求出AB的长度,然后根据角平分线的性质得出,再利用即可得出CD的长度,从而求出点C的坐标;
(3)首先利用平行四边形的性质找出所有可能的M点,然后分情况进行讨论,利用待定系数法即可求解.
【详解】
(1)令,则,
令,则,解得 ,
∴,
,
.
过点C作交AB于点D,
∵BC平分, ,
.
,
,
解得 ,
.
(2)如图,能与A,B,C构成平行四边形的点有三处:,
①点C与在同一直线,是经过点C与AB平行的直线,设其直线的解析式为 ,
将代入中,
得,解得 ,
∴CM所在的直线的解析式为;
②∵四边形是平行四边形,
∴ .
,
.
设直线 的解析式为 ,
将代入解析式中得
解得
∴直线解析式为 ,
综上所述,CM所在的直线的解析式为或.
本题主要考查一次函数与几何综合,平行四边形的判定与性质,掌握待定系数法及数形结合是解题的关键.
15、 (1) h=9d−20;(2) 24cm.
【解析】
(1)根据题意设h与d之间的函数关系式为:h=kd+b,利用待定系数法从表格中取两组数据,利用待定系数法,求得函数关系式;
(2)把h=196代入函数解析式即可求得.
【详解】
(1)设h与d之间的函数关系式为:h=kd+b.
把d=20,h=160;d=21,h=169,
分别代入得,.
解得k=9,b=−20,
即h=9d−20;
(2)当h=196时,196=9d−20,
解得d=24cm.
本题考查了一次函数的应用,根据题意找到对应数据是解题的关键.
16、(1)见解析;(2)108°
【解析】
(1)利用平行四边形的性质得出AD∥BC,AD=BC,证出∠D=∠ECF,由ASA即可证出△ADE≌△FCE;
(2)证出AB=FB,由等腰三角形的性质和三角形内角和定理即可得出答案.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠D=∠ECF,
在△ADE和△FCE中,
∴△ADE≌△FCE(ASA);
(2)∵△ADE≌△FCE,
∴AD=FC,
∵AD=BC,AB=2BC,
∴AB=FB,
∴∠BAF=∠F=36°,
∴∠B=180°-2×36°=108°.
运用了平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
17、(1) ;(2) 12.
【解析】
试题分析: 由x=,y=,得出x+y=,xy=,由此进一步整理代数式,整体代入求得答案即可.
试题解析:
(1)∵x=,y=,
∴x+y=,xy=,
∴x2-xy+y2=(x+y)2-3xy=7-=;
(2)===12.
18、详见解析
【解析】
根据平行线的性质,利用全等三角形的判定定理(AAS)和性质,可得出结论.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC,AD//BC,∴∠DAE=∠CBF,
∵DE⊥AC于E,BF⊥AC于F,
∴∠DEA=∠BFC=90°,
在△AED和△BFC中,
,
∴△AED≌△BFC,
∴BF=DE.
考查了平行四边形的性质,以及全等三角形的性质与判定,解题关键是灵活运用其性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
作出函数图象,联立方程组,解出方程组,结合函数图象即可解决问题.
【详解】
根据题意画出函数图象得,
联立方程组和
解得,,,
结合图象可得,当时,
20、1
【解析】
试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.
解:∵四边形ABCD是平行四边形,AC=12,
∴OA=AC=6,BD=2OB,
∵AB⊥AC,AB=8,
∴OB===10,
∴BD=2OB=1.
故答案为:1.
21、
【解析】
提取公因式a进行分解即可.
【详解】
解:a2−5a=a(a−5).
故答案是:a(a−5).
本题考查了因式分解−提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
22、
【解析】
设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
【详解】
设BG=x,
则BE=x,
∵BE=BC,
∴BC=x,
则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
故答案为:.
本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.
23、24
【解析】
根据中点的性质求出BF、BD,根据中位线的性质求出DE、FE,从而求出四边形BDEF的周长.
【详解】
∵D、E、F 分别是 BC、AC、AB 边上的中点,
∴,
,,
∵AB=BC=12cm
∴BF=DE=BD=BF=6cm
∴四边形BDEF的周长为24cm.
本题考查线段的中点、三角形中位线定理.解决本题的关键是利用三角形的中位线平行于第三边并且等于第三边的一半求出DE和FE.
二、解答题(本大题共3个小题,共30分)
24、(1)5;(2);(3)当或时,⊿OCQ是等腰三角形.
【解析】
(1)利用勾股定理先求出AC的长,继而根据已知条件即可求得答案;
(2)延长QO交AD于点E,连接PE、PQ ,先证明△AEO≌△CQO,从而得OE=OQ,AE=CQ=y,由垂直平分线的性质可得PE=PQ,即,在Rt⊿EDP中,有,在Rt⊿PCQ中,,继而可求得答案;
(3)分CQ=CO,OQ=CQ,OQ=OC三种情况分别进行讨论即可求得答案.
【详解】
(1)∵四边形ABCD是长方形,
∴∠ABC=90°,
∴,
∴OB=OA=OC=;
(2)延长QO交AD于点E,连接PE、PQ ,
∵四边形ABCD是长方形,
∴CD=AB=6,AD=BC=8,AD//BC,
∴∠AEO=∠CQO,
在△COQ和△AOE中,
,
∴△AEO≌△CQO(SAS),
∴OE=OQ,AE=CQ=y,
∴ED=AD-AE=8-y,
∵OP⊥OQ,
∴OP垂直平分EQ,
∴PE=PQ,
∴,
∵PD=x,
∴CP=CD-CP=6-x,
在Rt⊿EDP中,,
在Rt⊿PCQ中,,
∴,
∴;
(3)分三种情况考虑:
①如图,若CQ=CO时,此时CQ=CO=5;
②如图,若OQ=CQ时,作OF⊥BC,垂足为点F,
∵OB=OC,OF⊥BC,
∴BF=CF=BC=4,
∴,
∵OQ=CQ,
∴,
∴,
∴,
∴ ;
③若OQ=OC时,此时点Q与点B重合,点P在DC延长线上,此情况不成立,
综上所示,当或时,⊿OCQ是等腰三角形.
本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,一次函数的应用等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.
25、(1)平均数为11,众数为13,中位数为12.(2)优秀等级的工人约为72人.
【解析】
(1)根据平均数加工零件总数总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数中出现次数最多的数据,分别进行解答即可得出答案;
(2)用样本的平均数估计总体的平均数即可.
【详解】
(1)由统计图可得,
平均数为:(件),
出现了4次,出现的次数最多,
众数是件,
把这些数从小到大排列为:,,,,,,,,,,最中间的数是第5、6个数的平均数,
则中位数是(件);
(2)(人)
答:优秀等级的工人约为72人.
本题考查统计量的选择,平均数、中位数和众数,解题的关键是明确题意,找出所求问题需要的条件.
26、(1)见解析;(2)△AOE的面积与△BOE的面积相等.
【解析】
试题分析:(1)过点A作AC⊥y轴于C,连接AB交y轴于E,如图,
(2)证明△ACE≌△BOE,则AE=BE,于是根据三角形面积公式可判断△AOE的面积与△BOE的面积相等.
解:(1)如图,
(2)∵A(3,4),B(﹣3,0),
∴AC=OB=3,
在△ACE和△BOE中,
,
∴△ACE≌△BOE,
∴AE=BE,
∴△AOE的面积与△BOE的面积相等.
题号
一
二
三
四
五
总分
得分
批阅人
辽宁省盘锦兴隆台区七校联考2024-2025学年数学九上开学达标检测模拟试题【含答案】: 这是一份辽宁省盘锦兴隆台区七校联考2024-2025学年数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省盘锦市名校2025届九年级数学第一学期开学统考模拟试题【含答案】: 这是一份辽宁省盘锦市名校2025届九年级数学第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届辽宁省盘锦市大洼区九年级数学第一学期开学经典模拟试题【含答案】: 这是一份2025届辽宁省盘锦市大洼区九年级数学第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。