搜索
    上传资料 赚现金
    英语朗读宝

    辽宁省沈阳市2024-2025学年九上数学开学达标测试试题【含答案】

    辽宁省沈阳市2024-2025学年九上数学开学达标测试试题【含答案】第1页
    辽宁省沈阳市2024-2025学年九上数学开学达标测试试题【含答案】第2页
    辽宁省沈阳市2024-2025学年九上数学开学达标测试试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省沈阳市2024-2025学年九上数学开学达标测试试题【含答案】

    展开

    这是一份辽宁省沈阳市2024-2025学年九上数学开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若实数a满足,那么a的取值情况是( )
    A.B.C.或D.
    2、(4分)如图是自动测温仪记录的图象,它反映了武汉的冬季某天气温随时间的变化而变化的情况,下列说法错误的是( )
    A.这一天凌晨4时气温最低
    B.这一天14时气温最高
    C.从4时至14时气温呈上升状态(即气温随时间增长而上升)
    D.这一天气温呈先上升后下降的趋势
    3、(4分)若分式无意义,则x等于( )
    A.﹣B.0C.D.
    4、(4分)下列各组数中,不是勾股数的是( )
    A.9,12,15B.12,18,22C.8,15,17D.5,12,13
    5、(4分)如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,连结OE,若AC=12,△OAE的周长为15,则▱ABCD的周长为( )
    A.18B.27C.36D.42
    6、(4分)如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是( )
    A.△CDF≌△EBC
    B.∠CDF=∠EAF
    C.CG⊥AE
    D.△ECF是等边三角形
    7、(4分)在▱ABCD中,∠A+∠C=130°,则∠A的度数是( )
    A.50°B.65°C.70°D.80°
    8、(4分)下列各组数中,能构成直角三角形的是( )
    A.1,1,B.4,5,6C.6,8,11D.5,12,15
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)因式分解:___________.
    10、(4分)图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱体铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上). 现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.①图2中折线ABC表示___________槽中水的深度与注水时间之间的关系(选填“甲”或“乙”);②点B的纵坐标表示的实际意义是___________.
    11、(4分)一个三角形的底边长为5,高为h可以任意伸缩.写出面积S随h变化的函数解析式_____.
    12、(4分)如图,四边形 ABCD 中,E、F、G、H 分别为各边的中点,顺次连 结 E、F、G、H,把四边形 EFGH 称为中点四边形.连结 AC、BD,容易证明:中点 四边形 EFGH 一定是平行四边形.
    (1)如果改变原四边形 ABCD 的形状,那么中点四边形的形状也随之改变,通过探索 可以发现:当四边形 AB CD 的对角线满足 AC=BD 时,四边形 EFGH 为菱形;当四边形ABCD 的对角线满足 时,四边形 EFGH 为矩形;当四边形 ABCD 的对角线满足 时,四边形 EFGH 为正方形.
    (2)试证明:S△AEH+S△CFG= S□ ABCD
    (3)利用(2)的结论计算:如果四边形 ABCD 的面积为 2012, 那么中点四边形 EFGH 的面积是 (直接将结果填在 横线上)
    13、(4分)如图,在直角坐标系中,正方形、的顶点均在直线上,顶点在轴上,若点的坐标为,点的坐标为,那么点的坐标为____,点的坐标为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)重庆出租车计费的方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:
    (1)该地出租车起步价是_____元;
    (2)当x>2时,求y与x之间的关系式;
    (3)若某乘客一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?
    15、(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于C、D两点, C点的坐标是(4,-1),D点的横坐标为-1.
    (1)求反比例函数与一次函数的关系式;
    (1)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值?
    16、(8分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.
    (1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
    (2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
    (3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
    17、(10分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:
    (1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?
    (2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?
    (3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x= ,y= .(写出x与y的一组整数值即可).
    18、(10分)(1)探究新知:如图1,已知与的面积相等,试判断与的位置关系,并说明理由.
    (2)结论应用:
    ①如图2,点,在反比例函数的图像上,过点作轴,过点作轴,垂足分别为,,连接.试证明:.
    ②若①中的其他条件不变,只改变点,的位置如图3所示,请画出图形,判断与的位置关系并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)的整数部分是a,小数部分是b,则________.
    20、(4分)如图,在▱ABCD中,再添加一个条件_____(写出一个即可),▱ABCD是矩形(图形中不再添加辅助线)
    21、(4分)函数 yl=" x" ( x ≥0 ) ,( x > 0 )的图象如图所示,则结论:①两函数图象的交点A的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8
    ④当 x 逐渐增大时, yl随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .
    22、(4分)在中,若∠A=38°,则∠C=____________
    23、(4分)为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由、、三种饼干搭配而成,每袋礼包的成本均为、、三种饼干成本之和.每袋甲类礼包有5包种饼干、2包种饼干、8包种饼干;每袋丙类礼包有7包种饼干、1包种饼干、4包种饼干.已知甲每袋成本是该袋中种饼干成本的3倍,利润率为,每袋乙的成本是其售价的,利润是每袋甲利润的;每袋丙礼包利润率为.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为,则当天该网店销售总利润率为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)作图题:在△ABC中,点D是AB边的中点,请你过点D作△ABC的中位线DE交AC于点E.(不写作法,保留作图痕迹)
    25、(10分)如图,在中,点对角线上,且,连接。
    求证:(1);
    (2)四边形是平行四边形。
    26、(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
    (1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
    (2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
    ①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
    ②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据二次根式的性质即可解答.
    【详解】
    由题意可知:=﹣a+2=﹣(a﹣2),
    ∴a﹣2≤0,
    ∴a≤2,
    故选D.
    本题考查了二次根式的性质,熟知是解决问题的关键.
    2、D
    【解析】
    根据气温变化图,分析变化趋势和具体数值,即可求出答案.
    【详解】
    解:A.这一天凌晨4时气温最低为-3℃,故本选项正确;
    B.这一天14时气温最高为8℃,故本选项正确;
    C.从4时至14时气温呈上升状态,故本选项正确;
    D.这一天气温呈先下降,再上升,最后下降的趋势,故本选项错误;
    故选:D.
    本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.
    3、D
    【解析】
    直接利用分式无意义则分母为零进而得出答案.
    【详解】
    解:∵分式无意义,
    ∴2x−3=0,
    解得:x=.
    故选D.
    此题主要考查了分式无意义的条件,正确把握定义是解题关键.
    4、B
    【解析】
    欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
    【详解】
    解:、,能构成直角三角形,是正整数,故是勾股数;
    、,不能构成直角三角形,故不是勾股数;
    、,能构成直角三角形,是正整数,故是勾股数;
    、,能构成直角三角形,是正整数,故是勾股数;
    故选:B.
    此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知的三边满足,则是直角三角形.
    5、C
    【解析】
    根据三角形的中位线定理可得OE=BC,由△OAE的周长为15可得AE+AO+EO=15,即可得AB+AC+BC=30,再由AC=12可得AB+BC=18,由此即可得▱ABCD的周长.
    【详解】
    ∵AE=EB,AO=OC,
    ∴OE=BC,
    ∵AE+AO+EO=15,
    ∴2AE+2AO+2OE=30,
    ∴AB+AC+BC=30,∵AC=12,
    ∴AB+BC=18,
    ∴▱ABCD的周长为18×2=1.
    故选C.
    本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是会灵活运用所学知识解决问题.
    6、C
    【解析】
    A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
    ∵△ABE、△ADF都是等边三角形,
    ∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
    ∴DF=BC,CD=BC,
    ∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
    ∠EBC=360°-∠ABC-60°=300°-∠ABC,
    ∴∠CDF=∠EBC,
    在△CDF和△EBC中,
    DF=BC,
    ∠CDF=∠EBC,
    CD=EB,
    ∴△CDF≌△EBC(SAS),故A正确;
    B.在平行四边形ABCD中,∠DAB=180°-∠ADC,
    ∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
    ∴∠CDF=∠EAF,故B正确;
    C. .当CG⊥AE时,∵△ABE是等边三角形,
    ∴∠ABG=30°,
    ∴∠ABC=180°-30°=150°,
    ∵∠ABC=150°无法求出,故C错误;
    D. 同理可证△CDF≌△EAF,
    ∴EF=CF,
    ∵△CDF≌△EBC,
    ∴CE=CF,
    ∴EC=CF=EF,
    ∴△ECF是等边三角形,故D正确;
    故选C.
    点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.
    7、B
    【解析】
    根据平行四边形的性质可知∠A=∠C,再结合题中∠A+∠C=130°即可求出∠A的度数.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴.
    又∵∠A+∠C=130°,
    ∴∠A =65°,
    故选:B.
    本题主要考查平行四边形的性质,掌握平行四边形的性质是解题的关键.
    8、A
    【解析】
    欲求证是否为直角三角形,这里给出三边的长,只要验证两短边的平方和是否等于最长边的平方即可.
    【详解】
    解:A.12+12=()2,能构成直角三角形,故符合题意;
    B.52+42≠62,不能构成直角三角形,故不符合题意;
    C.62+82≠112,不能构成直角三角形,故不符合题意;
    D.122+52≠152,不能构成直角三角形,故不符合题意.
    故选A.
    本题考查了勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    直接提取公因式2,进行分解因式即可.
    【详解】
    2(a-b).
    故答案为:2(a-b).
    此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
    10、乙 乙槽中铁块的高度为14cm
    【解析】
    根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平.
    【详解】
    ①根据题意可知图2中折线ABC表示乙槽中水的深度与注水时间之间的关系;
    ②点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm,
    故答案为乙,乙槽中铁块的高度为14cm.
    本题考查了实际问题与函数的图象,理解题意,准确识图是解决此类问题的关键.
    11、
    【解析】
    直接利用三角形面积求法得出函数关系式.
    【详解】
    解:∵一个三角形的底边长为5,高为h可以任意伸缩,
    ∴面积S随h变化的函数解析式为:S=h•5=h.
    故答案为S=h.
    此题主要考查了函数关系式,正确记忆三角形面积是解题关键.
    12、;(2)详见解析;(3)1
    【解析】
    (1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.
    (2)由相似三角形的面积比等于相似比的平方求解.
    (3)由(2)可得S▱EFGH=S四边形ABCD=1
    【详解】
    (1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;
    若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF= AC,EH=BD,故应有AC=BD;
    (2)S△AEH+S△CFG=S四边形ABCD
    证明:在△ABD中,
    ∵EH=BD,
    ∴△AEH∽△ABD.
    ∴=()2=
    即S△AEH=S△ABD
    同理可证:S△CFG=S△CBD
    ∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;
    (3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,
    同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,
    故S▱EFGH=S四边形ABCD=1.
    本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.
    13、
    【解析】
    先求出点、的坐标,代入求出解析式,根据=1,(3,2)依次求出点点、、、的纵坐标及横坐标,得到规律即可得到答案.
    【详解】
    ∵(1,1),(3,2),
    ∴正方形的边长是1,正方形的边长是2,
    ∴(0,1),(1,2),
    将点、的坐标代入得,
    解得,
    ∴直线解析式是y=x+1,
    ∵=1,(3,2),
    ∴的纵坐标是,横坐标是,
    ∴的纵坐标是,横坐标是,
    ∴的纵坐标是,横坐标是,
    ∴的纵坐标是,横坐标是,
    由此得到的纵坐标是,横坐标是,
    故答案为:(7,8),(,).
    此题考查一次函数的定义,函数图象,直角坐标系中点的坐标规律,能根据图象求出点的坐标并总结规律用于解题是关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)10;(2)y=2x+6;(3)这位乘客需付出租车车费42元.
    【解析】
    (1)由图象知x=0时,y=10可得答案;
    (2)先求得出租车每公里的单价,根据车费=起步价+超出部分费用可得函数解析式;
    (3)将x=18代入(2)中所求函数解析式.
    【详解】
    解:(1)由函数图象知,出租车的起步价为10元,
    故答案为10;
    (2)当x>2时,每公里的单价为(14﹣10)÷(4﹣2)=2,
    ∴当x>2时,y=10+2(x﹣2)=2x+6;
    (3)当x=18时,y=2×18+6=42元,
    答:这位乘客需付出租车车费42元.
    此题考查了函数图象,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.
    15、(1)y=-0.5x+1,y=;(1)-1

    相关试卷

    辽宁省沈阳市实验北2024-2025学年九上数学开学统考试题【含答案】:

    这是一份辽宁省沈阳市实验北2024-2025学年九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    辽宁省沈阳市皇姑区2024-2025学年九上数学开学监测模拟试题【含答案】:

    这是一份辽宁省沈阳市皇姑区2024-2025学年九上数学开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    辽宁省沈阳市法库县2024-2025学年数学九上开学综合测试试题【含答案】:

    这是一份辽宁省沈阳市法库县2024-2025学年数学九上开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map