![辽宁省沈阳市苏家屯区2025届九上数学开学监测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16285417/0-1729734334309/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![辽宁省沈阳市苏家屯区2025届九上数学开学监测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16285417/0-1729734334355/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![辽宁省沈阳市苏家屯区2025届九上数学开学监测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16285417/0-1729734334388/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
辽宁省沈阳市苏家屯区2025届九上数学开学监测试题【含答案】
展开
这是一份辽宁省沈阳市苏家屯区2025届九上数学开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是( )
A.0.72B.2.0C.1.125D.不能确定
2、(4分)一元二次方程x2﹣8x+20=0的根的情况是( )
A.没有实数根 B.有两个相等的实数根
C.只有一个实数根 D.有两个不相等的实数根
3、(4分)在下列四个图案中既是轴对称图形,又是中心对称图形的是( )
A.B.C..D.
4、(4分)若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为( )
A.10B.7或10C.4D.7或4
5、(4分)下列调查:①了解夏季冷饮市场上冰淇淋的质量;②了解嘉淇同学20道英语选择題的通过率;③了解一批导弹的杀伤范围;④了解全国中学生睡眠情况.不适合普查而适合做抽样调查的是( )
A.①②④B.①③④C.②③④D.①②③
6、(4分)一次函数与,在同一平面直角坐标系中的图象是( )
A.B.C.D.
7、(4分)如图,已知四边形ABCD是平行四边形,下列结论中错误的是( )
A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形
C.当AC=BD时,它是矩形D.当∠ABC=90°时,它是正方形
8、(4分)2022年将在北京---张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了滑雪选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:
设两队队员身高的平均数依次为,,方差依次为,,则下列关系中完全正确的是( ).
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)正方形ABCD中,,P是正方形ABCD内一点,且,则的最小值是______.
10、(4分)若实数a、b满足,则=_____.
11、(4分)如图所示,△ABC为等边三角形,D为AB的中点,高AH=10 cm,P为AH上一动点,则PD+PB的最小值为_______cm.
12、(4分)已知三角形两边长分别为2,3,那么第三边的长可以是___________.
13、(4分)___________
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知直线AB的函数解析式为,直线与x轴交于点A,与y轴交于点B.
(1)求A、B两点的坐标;
(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),过点P作PE⊥x轴于点E,PF⊥y轴于点F,连接EF;
①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;
②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.
15、(8分)已知一次函数的图象经过点与点.
(1)求这个一次函数的解析式;
(2)若点和点在此一次函数的图象上,比较,的大小.
16、(8分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)每分钟进水、出水各多少升?
17、(10分)(1)因式分解:;(2)解方程:
18、(10分)如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.
(1)求k、b的值;
(2)求点B的坐标;
(3)求△ABC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.
20、(4分)如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为________.
21、(4分)有一组勾股数,其中的两个分别是8和17,则第三个数是________
22、(4分)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__________.
23、(4分)如图中的数字都是按一定规律排列的,其中x的值是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系xOy中,一次函数y=-x+b的图象与反比例函数y=-的图象交于点A(-4,a)和B(1,m).
(1)求b的值和点B的坐标;
(2)如果P(n,0)是x轴上一点,过点P作x轴垂线,交一次函数于点M,交反比例函数于点N,当点M在点N上方时,直接写出n的取值范围.
25、(10分)如图,直线经过矩形的对角线的中点,分别与矩形的两边相交于点、.
(1)求证:;
(2)若,则四边形是______形,并说明理由;
(3)在(2)的条件下,若,,求的面积.
26、(12分)如图,中,平分交于点 ,为的中点.
(1)如图①,若为的中点,,,,,求;
(2)如图②,为线段上一点,连接,满足,.求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.
【详解】
∵AB=1.5,BC=0.9,AC=1.2,
∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,
∴AB2=BC2+AC2,
∴∠ACB=90°,
∵CD是AB边上的高,
∴S△ABC=AB·CD=AC·BC,
1.5CD=1.2×0.9,
CD=0.72,
故选A.
该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运用勾股定理首先证明△ABC为直角三角形;解题的关键是灵活运用三角形的面积公式来解答.
2、A
【解析】
先计算出△,然后根据判别式的意义求解.
【详解】
∵△=(-8)2-4×20×1=-16<0,
∴方程没有实数根.
故选A.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
3、B
【解析】
试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:
A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、不是轴对称图形,也不是中心对称图形,不符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选B.
考点:轴对称图形和中心对称图形
4、C
【解析】
根据等腰三角形性质分为两种情况解答:当边长4cm为腰或者4cm为底时
【详解】
当4cm是等腰三角形的腰时,则底边长18-8=10cm,此时4,4,10不能组成三角形,应舍去;当4cm是等腰三角形的底时,则腰长为(18-4)÷2=7cm,此时4,7,7能组成三角形,所以此时腰长为7,底边长为4,故选C
本题考查等腰三角形的性质与三角形三边的关系,本题关键在于分情况计算出之后需要利用三角形等边关系判断
5、B
【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:①④中个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查;
③了解一批导弹的杀伤范围具有破坏性不宜普查;
②个体数量少,可采用普查方式进行调查.
故选B.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、C
【解析】
根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.
【详解】
当ab>0,a,b同号,y=abx经过一、三象限,
同正时,y=ax+b过一、三、二象限;
同负时过二、四、三象限,
当ab<0时,a,b异号,y=abx经过二、四象限
a<0,b>0时,y=ax+b过一、三、四象限;
a>0,b<0时,y=ax+b过一、二、四象限.
故选C.
主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
7、D
【解析】
A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;
B. ∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;
C. 根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;
D. 有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;
综上所述,符合题意是D选项;
故选D.
8、D
【解析】
首先求出平均数再进行吧比较,然后再根据法方差的公式计算.
=,
=,
=,
=
所以=,<.
故选A.
“点睛”此题主要考查了平均数和方差的求法,正确记忆方差公式是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据正方形性质,当A,P,C在同一直线上时,PC+PA是值小.
【详解】
当A,P,C在同一直线上时,PC+PA是值小.
因为,四边形ABCD 是正方形,
所以,AC= .
故答案为
本题考核知识点:正方形性质,勾股定理. 解题关键点:利用两点之间线段最短解决问题.
10、﹣
【解析】
根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.
11、10
【解析】
连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.
【详解】
连接PC,
∵△ABC为等边三角形,D为AB的中点,
∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.
故答案为:10
考查轴对称-最短路线问题,等边三角形的性质,找出点P的位置是解题的关键.
12、2(答案不唯一).
【解析】
根据三角形的三边关系可得3-2<第三边长<3+2,再解可得第三边的范围,然后可得答案.
【详解】
解:设第三边长为x,由题意得:
3-2<x<3+2,
解得:1<x<1.
故答案为:2(答案不唯一).
此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.
13、-0.1
【解析】
试题解析:原式=0.4-0.7=-0.1.
故答案为:-0.1.
三、解答题(本大题共5个小题,共48分)
14、(1)A(4,0),B(0,8);(2)S =﹣4m+16,(0<m<4);(3),理由见解析
【解析】
试题分析:(1)根据坐标轴上点的特点直接求值,
(2)①由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;
②判断出EF最小时,点P的位置,根据三角形的面积公式直接求解即可.
试题解析:
(1)令x=0,则y=8,
∴B(0,8),
令y=0,则﹣2x+8=0,
∴x=4,
∴A(4,0),
(2)∵点P(m,n)为线段AB上的一个动点,
∴﹣2m+8=n,∵A(4,0),
∴OA=4,
∴0<m<4
∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);
(3)存在,理由如下:
∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,
∴四边形OEPF是矩形,
∴EF=OP,
当OP⊥AB时,此时EF最小,
∵A(4,0),B(0,8),
∴AB=4,
∵S△AOB=OA×OB=AB×OP,
∴OP= ,
∴EF最小=OP=.
【点睛】主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO的面积.
15、 (1) y=2x-1;(2)m0,
∴y随x的增大而增大.
∵a<a+1,
∴m
相关试卷
这是一份辽宁省沈阳市皇姑区2024-2025学年九上数学开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届辽宁省九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年辽宁省沈阳市沈河区数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)