搜索
    上传资料 赚现金
    英语朗读宝

    辽阳市重点中学2025届九上数学开学调研模拟试题【含答案】

    辽阳市重点中学2025届九上数学开学调研模拟试题【含答案】第1页
    辽阳市重点中学2025届九上数学开学调研模拟试题【含答案】第2页
    辽阳市重点中学2025届九上数学开学调研模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽阳市重点中学2025届九上数学开学调研模拟试题【含答案】

    展开

    这是一份辽阳市重点中学2025届九上数学开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是( )
    A.B.C.D.
    2、(4分)如图,□ABCD的周长是28㎝,△ABC的周长是22㎝,则AC的长为( )
    A.6㎝B.12㎝C.4㎝D.8㎝
    3、(4分)在直角三角形中,如果有一个角是30°,那么下列各比值中,是这个直角三角形的三边之比的是()
    A.1∶2∶3B.2∶3∶4
    C.1∶4∶9D.1∶∶2
    4、(4分)如图,已知△ ABC中,AB=AC,∠ BAC=90°,直角∠ EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△ EPF是等腰直角三角形; ③2S四边形AEPF=S△ ABC; ④BE+CF=EF.当∠ EPF在△ ABC内绕顶点P旋转时(点E与A、B重合).上述结论中始终正确的有( )
    A.1个B.2个C.3个D.4个
    5、(4分)函数中自变量x的取值范围是( )
    A.x≥ 1 B.x≤ 1 C.x≠ 1 D.x> 1
    6、(4分)若,则的值( )
    A.B.C.–7D.7
    7、(4分)下列图形中既是中心对称图形又是轴对称图形的是( )
    A.B.C.D.
    8、(4分)关于x的一元二次方程有一个根为0,则m的值为( )
    A.3B.-3C.D.0
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某校组织演讲比赛,从演讲主题、演讲内容、整体表现三个方面对选手进行评分.评分规则按主题占,内容占,整体表现占,计算加权平均数作为选手的比赛成绩.小强的各项成绩如表,他的比赛成绩为__分.
    10、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
    11、(4分)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为_____.
    12、(4分)如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了_____ cm.
    13、(4分)如图,,请你再添加一个条件______,使得(填一个即可).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.
    (1)求证:△ADF≌△CDE;
    (2)求证:DF=DG;
    (3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.
    15、(8分)健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐给社区健身中心. 组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.
    (1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?
    (2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?
    16、(8分)如图,▱ABCD在平面直角坐标系中,点A(﹣2,0),点B(2,0),点D(0,3),点C在第一象限.
    (1)求直线AD的解析式;
    (2)若E为y轴上的点,求△EBC周长的最小值;
    (3)若点Q在平面直角坐标系内,点P在直线AD上,是否存在以DP,DB为邻边的菱形DBQP?若存在,求出点P的坐标;若不存在,请说明理由.
    17、(10分)用适当方法解下列方程
    (1)3(x﹣2)=5x(x﹣2)
    (2)x2+x﹣1=0
    18、(10分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE.、DE分别交AB于点O、F,且OP=OF,则BP的长为______.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.
    20、(4分)在一次数学单元考试中,某小组6名同学的成绩(单位:分)分别是:65,80,70,90,100,70。则这组数据的中位数分别是_________________________分。
    21、(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E,若AB=8,AD=6,则EC=_____________.
    22、(4分)频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是_____.
    23、(4分)已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是________cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,1),交y轴于点B(1,n),且m,n满足+(n﹣12)2=1.
    (1)求直线AB的解析式及C点坐标;
    (2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;
    (3)如图2,点E(1,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.
    25、(10分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.
    (1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;
    (2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;
    (3)如图3,当点在线段的延长线上,且时,求线段的长.
    26、(12分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)
    请根据图中提供的信息,回答下列问题:
    (1)a= ,并写出该扇形所对圆心角的度数为 ,请补全条形图.
    (2)在这次抽样调查中,众数和中位数分别是多少?
    (3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,
    由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,
    作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.
    故选D.
    2、D
    【解析】
    ∵ □的周长是28 cm,∴(cm).∵ △的周长是22 cm,
    ∴(cm).
    3、D
    【解析】
    设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.
    解:如图所示,
    设30°角所对的直角边BC=a,
    则AB=1BC=1a,
    ∴AC=,
    ∴三边之比为a:a:1a=1::1.
    故选D.
    “点睛”本题主要考查了含30度角的直角三角形的边的关系,勾股定理,是基础题,作出草图求解更形象直观.
    4、C
    【解析】
    根据等腰直角三角形的性质可得AP⊥BC,AP=PC,∠EAP=∠C=45°,根据同角的余角相等求出∠APE=∠CPF,然后利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,判定①正确,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,判定②正确;根据等腰直角三角形的斜边等于直角边的倍表示出EF,可知EF随着点E的变化而变化,判定④错误,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半,判定③正确
    【详解】
    如图,连接EF,
    ∵AB=AC,∠BAC=90°,点P是BC的中点,
    ∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
    ∴∠APF+∠CPF=90°,
    ∵∠EPF是直角,
    ∴∠APF+∠APE=90°,
    ∴∠APE=∠CPF,;
    在△APE和△CPF中,

    ∴△APE≌△CPF(ASA),
    ∴AE=CF,故①正确;
    ∴△EFP是等腰直角三角形,故②正确;
    根据等腰直角三角形的性质,EF=PE,
    所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,在其它位置EF≠AP,故④错误;
    ∵△APE≌△CPF,
    ∴S△APE=S△CPF,
    ∴S四边形AEPF=S△APF+S△APE=S△APF+S△CPF=S△APC=S△ABC,
    ∴2S四边形AEPF=S△ABC
    故③正确,
    综上所述,正确的结论有①②③共3个.
    故选C.
    本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE≌△CPF是解题的关键,也是本题的突破点.
    5、A
    【解析】
    试题分析:当x+1≥0时,函数有意义,所以x≥ 1,故选:A.
    考点:函数自变量的取值范围.
    6、D
    【解析】
    将两边平方后,根据完全平方公式化简即可得出结果.
    【详解】
    解:∵


    即:
    故选:D.
    本题考查了完全平方公式的应用,熟悉完全平方公式的性质是解题的关键.
    7、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、不是轴对称图形,是中心对称图形,故本选项错误;
    B、是轴对称图形,不是中心对称图形,故本选项错误;
    C、是轴对称图形,也是中心对称图形,故本选项正确;
    D、是轴对称图形,不是中心对称图形,故本选项错误,
    故选C.
    本此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念.
    8、B
    【解析】
    把x=1代入方程中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为1.
    【详解】
    把x=1代入方程中,得
    m2−9=1,
    解得m=−3或3,
    当m=3时,原方程二次项系数m−3=1,舍去,
    故选:B.
    本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据加权平均数的计算公式列式计算可得.
    【详解】
    解:根据题意,得小强的比赛成绩为,
    故答案为1.
    本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.
    10、﹣1
    【解析】
    首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BG,AD=BC,
    ∴∠DAE=∠G=30°,
    ∵DE=EC,∠AED=∠GEC,
    ∴△ADE≌△GCE,
    ∴AE=EG=AD=CG=1,
    在Rt△BFG中,∵FG=BG•cs30°=,
    ∴EF=FG-EG=-1,
    故答案为-1.
    本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
    11、1:1
    【解析】
    以点A为原点,建立平面直角坐标系,则点B(3,1),C(3,0),D(2,1),如下图所示:
    设直线AB的解析式为yAB=kx,直线CD的解析式为yCD=ax+b,
    ∵点B在直线AB上,点C、D在直线CD上,
    ∴1=3k, 解得:k= , ,
    ∴yAB=x, yCD=-x+3,
    ∴点P的坐标为( , ),
    ∴S△PBD :S△PAC= .
    故答案是:1:1.
    12、2.
    【解析】
    根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.
    【详解】
    Rt△ACD中,AC=AB=4cm,CD=3cm;
    根据勾股定理,得:AD==5cm;
    ∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;
    故橡皮筋被拉长了2cm.
    故答案为2.
    此题主要考查了等腰三角形的性质以及勾股定理的应用.
    13、(答案不唯一)
    【解析】
    注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.
    【详解】
    解:∵∠ A=∠ A, AB=AC,
    ∴若按照SAS可添加条件AD=AE;
    若按照AAS可添加条件∠ ADB=∠AEC;
    若按照ASA可添加条件∠B=∠C;
    故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.
    本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)详见解析;(3),理由详见解析.
    【解析】
    (1)根据SAS即可证明;
    (2)欲证明DF=DG,只要证明∠DFG=∠DGF;
    (3)如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.首先说明G是△BEF的内心,由题意Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,推出FH=FM,EH=EN,GN=GM=BM=BN=y,由EH:FH=1:3,设EH=a,则FH=3a,FB=3a+y,BE=a+y,EC=AF,推出FB+BE=2x,可得3a+y+a+y=2x,即y=x-2a,推出CN=2a,推出CE=a,想办法用a表示x、y即可解决问题;
    【详解】
    (1)证明:如图1中,∵四边形ABCD是正方形,
    ∴∠C=∠BAD=∠DAF=90°,CD=DA,
    在△ADF和△CDE中,
    ∴△ADF≌△CDE.
    (2)证明:如图1中,∵四边形ABCD是正方形,
    ∴∠FBG=45°,
    ∵△ADF≌△CDE,
    ∴DF=DE,∠ADF=∠CDE,
    ∴∠EDF=∠ADC=90°,
    ∠DFE=45°,
    ∵∠DFG=45°+∠EFG,∠DGF=45°+∠GFB,
    ∵∠EFG=∠BFG,
    ∴∠DFG=∠DGF,
    ∴DF=DG.
    (3)结论:
    理由:如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.
    ∵GF平分∠BAE,DB平分∠EBF,
    ∴G是△BEF的内心,∵GH⊥EF,
    ∴GH=GN=GM=y,
    ∵FG=FG,EG=EG,
    ∴Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,
    ∴FH=FM,EH=EN,GN=GM=BM=BN=y,
    ∵EH:FH=1:3,设EH=a,则FH=3a,
    ∵FB=3a+y,BE=a+y,
    ∵EC=AF,
    ∴FB+BE=2x,
    ∴3a+y+a+y=2x,
    ∴y=x﹣2a,
    ∴CN=2a,
    ∵EN=EH=a,
    ∴CE=a,
    在Rt△DEF中,DE=2a,
    在Rt△DCE中,


    本题考查四边形综合题、正方形的性质、全等三角形的判定和性质、等腰三角形的判定、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.
    15、(1)组装A、B两种型号的健身器材共有9种组装方案;(2)总组装费用最少的组装方案:组装A型器材22套,组装B型器材18套
    【解析】
    (1)设公司组装A型器材x套,则组装B型器材(40-x)套,依题意得,解不等式组可得;
    (2)总的组装费用:y=20x+18(40-x)=2x+720,可分析出最值.
    【详解】
    (1)设公司组装A型器材x套,则组装B型器材(40-x)套,依题意得

    解得:22≤x≤30 ,
    由于x为整数,∴x取22,23,24,25,26,27,28,29,30,
    ∴组装A、B两种型号的健身器材共有9种组装方案;
    (2)总的组装费用:y=20x+18(40-x)=2x+720 ,
    ∵k=2>0,∴y随x的增大而增大,
    ∴当x=22时,总的组装费用最少,最少组装费用是2×22+720=764元,
    总组装费用最少的组装方案:组装A型器材22套,组装B型器材18套.
    16、(1);(2)△EBC周长的最小值为;(1)满足条件的点P坐标为(﹣2,0)或(2,6).
    【解析】
    (1)设直线AD的解析式为y=kx+b,把A、D两点坐标代入,把问题转化为解方程组即可;
    (2)因为A、B关于y轴对称,连接AC交y轴于E,此时△BEC的周长最小;
    (1)分两种情形分别讨论求解即可解决问题;
    【详解】
    .解:(1)设直线AD的解析式为y=kx+b,
    把A(﹣2,0),D(0,1)代入y=kx+b,得到 ,
    解得 ,
    ∴直线AD的解析式为y=x+1.
    (2)如图1中,∵A(﹣2,0),B(2,0),
    ∴A、B关于y轴对称,
    连接AC交y轴于E,此时△BEC的周长最小,
    周长的最小值=EB+EC+BC=EA+EC+BC=AC+BC,
    ∵A(﹣2,0),C(4,1),B(2,0),
    ∴AC= ,
    ∴△EBC周长的最小值为: .
    (1)如图2中,
    ①当点P与A重合时,四边形DPQB是菱形,此时P(﹣2,0),
    ②当点P′在AD的延长线上时,DP′=AD,此时四边形BDP′Q是菱形,此时P′(2,6).
    综上所述,满足条件的点P坐标为(﹣2,0)或(2,6);
    本题考查一次函数综合题、平行四边形的性质、菱形的判定和性质、轴对称最短问题、待定系数法等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    17、(1)x1=2,x2=;(2)x=.
    【解析】
    (1) 用因式分解法解方程;
    (2) 利用求根公式法解方程.
    【详解】
    解:(1)方程整理得:3(x﹣2)﹣5x(x﹣2)=0,
    分解因式得:(x﹣2)(3﹣5x)=0,
    解得:x1=2,x2= ;
    (2)这里a=1,b=1,c=﹣1,
    ∵△=1+4=5,
    ∴x=.
    考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.
    18、
    【解析】
    根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP,根据全等三角形的性质可得出OE=OB、EF=BP,设BF=EP=CP=x,则AF=4-x,BP=3-x=EF,DF=DE-EF=4-(3-x)=x+1,依据Rt△ADF中,AF2+AD2=DF2,求出x的值,即可得出BP的长.
    【详解】
    解:根据折叠可知:△DCP≌△DEP,
    ∴DC=DE=4,CP=EP.
    在△OEF和△OBP中,,
    ∴△OEF≌△OBP(AAS),
    ∴OE=OB,EF=BP,
    ∴BF=EP=CP,
    设BF=EP=CP=x,则AF=4-x,BP=3-x=EF,DF=DE-EF=4-(3-x)=x+1,
    ∵∠A=90°,
    ∴Rt△ADF中,AF2+AD2=DF2,
    即(4-x)2+32=(1+x)2,
    解得:x=,
    ∴BP=3-x=3-=,
    故答案为:.
    本题考查了翻折变换的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用,熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.
    【详解】
    解:∵正方形的对角线长为2,
    设正方形的边长为x,
    ∴2x²=(2)²
    解得:x=2
    ∴正方形的边长为:2
    故答案为2.
    本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.
    20、75
    【解析】
    根据中位数的定义即可求解.
    【详解】
    先将数据从小到大排序为65,70,70,80,90,100,
    故中位数为(70+80)=75
    此题主要考查中位数的求解,解题的关键是熟知中位数的定义.
    21、
    【解析】
    连接EA,如图,利用基本作图得到MN垂直平分AC,所以EC=EA,设CE=x,则AE=x,DE=8-x,根据勾股定理得到62+(8-x)2=x2,然后解方程求出x即可.
    【详解】
    解:连接EA,如图,
    由作图得到MN垂直平分AC,
    ∴EC=EA,
    ∵四边形ABCD为矩形,
    ∴CD=AB=8,∠D=90°,
    设CE=x,则AE=x,DE=8-x,
    在Rt△ADE中,62+(8-x)2=x2,解得x=,
    即CE的长为.
    故答案为.
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
    22、1
    【解析】
    根据“频数:组距=2且组距为3”可得答案.
    【详解】
    根据题意知,该小组的频数为2×3=1.
    故答案为:1.
    本题考查了频数分布直方图,解题的关键是根据题意得出频数:组距=2.
    23、1
    【解析】
    解∵等腰三角形的两条边长分别是3cm、7cm,
    ∴当此三角形的腰长为3cm时,3+3<7,不能构成三角形,故排除,
    ∴此三角形的腰长为7cm,底边长为3cm,
    ∴此等腰三角形的周长=7+7+3=1cm,
    故答案为:1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,1);(3)点P的坐标(,)
    【解析】
    (1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;
    (2)画出图象,由CD⊥AB知可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;
    (3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.
    【详解】
    解:(1)∵+(n﹣12)2=1,
    ∴m=6,n=12,
    ∴A(6,1),B(1,12),
    设直线AB解析式为y=kx+b,
    则有,解得,
    ∴直线AB解析式为y=-2x+12,
    ∵直线AB过点C(a,a),
    ∴a=-2a+12,∴a=4,
    ∴点C坐标(4,4).
    (2)过点C作CD⊥AB交x轴于点D,如图1所示,
    设直线CD解析式为y=x+b′,把点C(4,4)代入得到b′=2,
    ∴直线CD解析式为y=x+2,
    ∴点D坐标(-4,1).
    (3)如图2中,取点F(-2,8),作直线EF交直线AB于P,
    图2
    ∵直线EC解析式为y=x-2,直线CF解析式为y=-x+,
    ∵×(-)=-1,
    ∴直线CE⊥CF,
    ∵EC=2,CF=2,
    ∴EC=CF,
    ∴△FCE是等腰直角三角形,
    ∴∠FEC=45°,
    ∵直线FE解析式为y=-5x-2,
    由解得,
    ∴点P的坐标为().
    本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F(-2,8)是解题的突破口.
    25、(1);(2)见解析;(3).
    【解析】
    (1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;
    (2)证△BAE≌△CAF即可得;
    (3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB+CD可得答案.
    【详解】
    解:(1)如图1,连接AC,
    ∵四边形ABCD是菱形,
    ∴AB=BC,
    又∵∠ABC=60°,
    ∴△ABC是等边三角形,
    ∵E是BC中点,
    ∴AE⊥BC,BE=BC=AB
    在Rt△ABE中,AE=BEtanB=BE;
    (2)证明:连接,如图2中,
    ∵四边形是菱形,,
    ∴与都是等边三角形,
    ∴,.
    ∵,
    ∴,
    在和中,

    ∴.
    ∴.
    (3)解:连接,过点作于点,如图3所示,
    ∵,,
    ∴.
    在中,
    ∵,,
    ∴,
    ∴.
    在中,
    ∵,,
    ∴,
    ∴.
    由(2)得,,
    则,
    ∵,
    ∴,
    可得,
    ∴,
    ∴.
    考查四边形的综合问题,解题的关键是掌握菱形的性质、等边三角形与全等三角形的判定与性质等知识点.
    26、(1)10,36°.补全条形图见解析;(2)5天,6天;(3)1.
    【解析】
    (1)根据各部分所占的百分比等于1列式计算即可求出a,用360°乘以所占的百分比求出所对的圆心角的度数,求出8天的人数,补全条形统计图即可.
    (2)众数是在一组数据中,出现次数最多的数据.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
    (3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.
    【详解】
    (1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%.
    用360°乘以所占的百分比求出所对的圆心角的度数:360°×10%=36°.
    240÷40=600,
    8天的人数,600×10%=60,
    故答案为10,36°.
    补全条形图如下:
    (2)∵参加社会实践活动5天的最多,∴众数是5天.
    ∵600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,
    ∴中位数是6天.
    (3)∵2000×(25%+10%+5%)=2000×40%=1.
    ∴估计“活动时间不少于7天”的学生人数大约有1人.
    题号





    总分
    得分
    批阅人
    主题
    内容
    整体表现
    85
    92
    90

    相关试卷

    庆阳市重点中学2025届九上数学开学调研试题【含答案】:

    这是一份庆阳市重点中学2025届九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    黄石市重点中学2024年数学九上开学调研模拟试题【含答案】:

    这是一份黄石市重点中学2024年数学九上开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    承德市重点中学2024年数学九上开学调研模拟试题【含答案】:

    这是一份承德市重点中学2024年数学九上开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map