临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】
展开
这是一份临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是( )
A.B.C.D.
2、(4分)若,则的值为( )
A.B.C.D.
3、(4分)已知x=,y=,则x2+xy+y2的值为( )
A.2B.4C.5D.7
4、(4分)已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1, 2)在这个反比例函数上,a的值可以是( )
A.0B.1C.2D.3
5、(4分)如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是( )
A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5
C.a:b:c=::D.a=6,b=10,c=12
6、(4分)计算的结果是( )
A.2B.C.D.-2
7、(4分)如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则矩形ABCD的面积是( )
A.13 B. C.60 D.120
8、(4分)顺次连接矩形四边中点所得的四边形一定是( )
A.正方形B.矩形C.菱形D.等腰梯形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.
10、(4分)已知直线与反比例函数的图象交于A、B两点,当线段AB的长最小时,以AB为斜边作等腰直角三角形△ABC,则点C的坐标是__________.
11、(4分)若二次根式有意义,则实数m的取值范围是_________.
12、(4分)若数使关于的不等式组有且只有四个整数解,的取值范围是__________.
13、(4分)已知一次函数y=kx+b的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______。
三、解答题(本大题共5个小题,共48分)
14、(12分)已知实数a,b,c在数轴上的位置如图所示,化简:.
15、(8分)菱形ABCD中,两条对角线AC、BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,连接EF.
(1)如图2,当∠ABC=60°时,猜想三条线段CE、CF、AB之间的数量关系___;
(2)如图1,当∠ABC=90°时,若AC=4 ,BE=,求线段EF的长;
(3)如图3,当∠ABC=90°,将∠EOF的顶点移到AO上任意一点O′处,∠EO′F绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E交BC的延长线一点E,射线O′F交CD的延长线上一点F,连接EF探究在整个运动变化过程中,线段CE、CF,O′C之间满足的数量关系,请直接写出你的结论.
16、(8分)在△ABC中,
(1)作线段AC的垂直平分线1,交AC于点O:(保留作图痕迹,请标明字母)
(2)连接BO并延长至D,使得,连接DA、DC,证明四边形ABCD是矩形.
17、(10分)图1,图2,图3是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,两点都在格点上,连结,请完成下列作图:
(1)以为对角线在图1中作一个正方形,且正方形各顶点均在格点上.
(2)以为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上.
(3)以为对角线在图3中作一个面积最小的平行四边形,且平行四边形各顶点均在格点上.
18、(10分)解不等式,并把解集表示在数轴上.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于的方程有实数根,则的取值范围是_________.
20、(4分)若二次根式有意义,则的取值范围是______________.
21、(4分)如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________.
22、(4分)如图,将一张矩形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C'的位置上,若∠BFE=67°,则∠ABE的度数为_____.
23、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.
25、(10分)如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中点,连结CM.
(1)求证:CM⊥EF.
(2)设正方形ABCD的边长为2,若五边形BCDEF的面积为,请直接写出CM的长.
26、(12分)已知一次函数y=(3-k)x-2k2+18.
(1)当k为何值时,它的图象经过原点?
(2)当k为何值时,它的图象经过点(0,-2)?
(3)当k为何值时,它的图象平行于直线y=-x?
(4)当k为何值时,y随x增大而减小?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
取DC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
【详解】
取中点,连接、、,
,
.
在中,利用勾股定理可得.
在中,根据三角形三边关系可知,
当、、三点共线时,最大为.
故选:.
本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.
2、C
【解析】
首先设,将代数式化为含有同类项的代数式,即可得解.
【详解】
设
∴
∴
故答案为C.
此题主要考查分式计算,关键是设参数求值.
3、B
【解析】
试题分析:根据二次根式的运算法则进行运算即可.
试题解析:
.
故应选B
考点:1.二次根式的混合运算;2.求代数式的值.
4、A
【解析】
根据函数的增减性判断出图象所在象限,进而得出图象上点的坐标特征,将四个选项的数值代入P(a-1,2)验证即可.
解:∵反比例函数,在每个象限内y随着x的增大而增大,
∴函数图象在二、四象限,
∴图象上的点的横、纵坐标异号.
A、a=0时,得P(-1,2),故本选项正确;
B、a=1时,得P(0,2),故本选项错误;
C、a=2时,得P(1,2),故本选项错误;
D、a=3时,得P(2,2),故本选项错误.
故选A.
此题考查了反比例函数图象上点的坐标特征,要熟悉反比例函数的性质,同时要注意数形结合.
5、D
【解析】
根据勾股定理的逆定理和三角形的内角和定理进行判定即可.
【详解】
解:A、∵∠A=25°,∠B=65°,
∴∠C=180°﹣∠A﹣∠B=90°,
∴△ABC是直角三角形,故A选项正确;
B、∵∠A:∠B:∠C=2:3:5,
∴,
∴△ABC是直角三角形;故B选项正确;
C、∵a:b:c=::,
∴设a=k,b=k,c=k,
∴a2+b2=5k2=c2,
∴△ABC是直角三角形;故C选项正确;
D、∵62+102≠122,
∴△ABC不是直角三角形,故D选项错误.
故选:D.
本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.
6、A
【解析】
根据分式的混合运算法则进行计算即可得出正确选项。
【详解】
解:
=2
故选:A
本题考查了分式的四则混合运算,熟练掌握运算法则是解本题的关键.
7、D
【解析】
由折叠图形的性质求得∠HEF=90°,则∠HEF=∠EFG=∠FGH=∠GHE=90∘ , 得到四边形EHFG是矩形,再由折叠的性质得矩形ABCD的面积等于矩形EFGH面积的2倍,根据已知数据即可求出矩形ABCD的面积.
【详解】
如图,
根据折叠的性质可得∠AEH=∠MEH,∠BEF=∠FEM,
∴∠AEH+∠BEF=∠MEH+∠FEM,
∴∠HEF=90°,
同理得∠HEF=∠EFG=∠FGH=∠GHE=90∘
∴四边形EHFG是矩形,
由折叠的性质得:S矩形ABCD=2S矩形HEFG=2×EH×EF=2×5×12=120;
故答案为:D.
本题考查矩形的折叠问题,解题关键在于能够得到四边形EHFG是矩形
8、C
【解析】
矩形的性质,三角形中位线定理,菱形的判定.
【分析】如图,连接AC.BD,
在△ABD中,∵AH=HD,AE=EB,∴EH=BD.
同理FG=BD,HG=AC,EF=AC.
又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE.
∴四边形EFGH为菱形.故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
D、E是AC和BC的中点,则DE是△ABC的中位线,则依据三角形的中位线定理即可求解.
【详解】
解:∵D,E分别是AC,BC的中点,
∴AB=2DE=1m.
故答案为:1.
本题考查了三角形的中位线定理,正确理解定理是解题的关键.
10、或
【解析】
联立方程组,求出A、B的坐标,分别用k表示,然后根据等腰直角三角形的两直角边相等求出k的值,即可求出结果.
【详解】
由题可得,
可得,
根据△ABC是等腰直角三角形可得:
,
解得,
当k=1时,点C的坐标为,
当k=-1时,点C的坐标为,
故答案为或.
本题主要考查了一次函数与反比例函数的综合应用,利用好等腰直角三角形的条件很重要.
11、m≤3
【解析】
由二次根式的定义可得被开方数是非负数,即可得答案.
【详解】
解:由题意得:解得: ,故答案为:.
本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
12、
【解析】
此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.
【详解】
解不等式①得,x<5,
解不等式②得,x≥2+2a,
由上可得2+2a≤x<5,
∵不等式组恰好只有四个整数解,即1,2,3,4;
∴0<2+2a≤1,
解得,.
此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
13、y=2x+2
【解析】
根据一次函数解析式y=kx+b,再将点(-1,0)和点(0,2)代入可得方程组,解出即可得到k和b的值,即得到解析式.
【详解】
因为点(-1,0)和点(0,2)经过一次函数解析式y=kx+b,所以0=-x+b,2=b,得到k=2,b=2,所以一次函数解析式是:y=2x+2,故本题答案是:y=2x+2.
本题考查用待定系数法求一次函数解析式,难度不大,关键是掌握待定系数发的运用.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
直接利用数轴判断得出:a
相关试卷
这是一份安庆九一六校2025届数学九年级第一学期开学综合测试模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省临沂市九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河南卢氏县数学九年级第一学期开学综合测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。