年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    南充市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】

    南充市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】第1页
    南充市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】第2页
    南充市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    南充市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】

    展开

    这是一份南充市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )
    A.(﹣26,50)B.(﹣25,50)
    C.(26,50)D.(25,50)
    2、(4分)在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,则斜边AB的长是( )
    A.6cmB.8cC.13cmD.15cm
    3、(4分)如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( )
    A.2B.4C.8D.16
    4、(4分)在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )
    A.6B.7C.2D.2
    5、(4分)下列方程中,一元二次方程的是( )
    A.=0B.(2x+1)(x﹣3)=1
    C.ax2+bx=0D.3x2﹣2xy﹣5y2=0
    6、(4分)如图,等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是( )
    ①OD=OE;②;③;④△BDE的周长最小值为9,
    A.1个B.2个C.3个D.4个
    7、(4分)下列式子中属于最简二次根式的是( )
    A.B.C.D.
    8、(4分)化简:的结果是( )
    A.B.C.﹣D.﹣
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,AB∥CD∥EF,若AE=3CE,DF=2,则BD的长为________.
    10、(4分)在正比例函数 y=(2m-1)x 中,y 随 x 增大而减小,则 m 的取值范围是_____.
    11、(4分)如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.
    12、(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.
    13、(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
    (1)该公司对这两种户型住房有哪几种建房方案?
    (2)该公司如何建房获得利润最大?
    (3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
    (注:利润=售价-成本)
    15、(8分)解分式方程:.
    16、(8分)某校八年级在一次广播操比赛中,三个班的各项得分如下表:
    (1) 填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班
    (2) 如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.
    17、(10分)分解因式
    (1)
    (2)
    18、(10分)如图,在中,点分别在上,点在对角线上,且.求证:四边形是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A、C两点的坐标分别为(2,0)、(1,2),点B在第一象限,将直线y=-2x沿y轴向上平移m(m>0)个单位.若平移后的直线与边BC有交点,则m的取值范围是_____________.
    20、(4分)如图,购买“黄金1号”王米种子,所付款金额y元与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则购买1千克“黄金1号”玉米种子需付款___元,购买4千克“黄金1号”玉米种子需___元.
    21、(4分)如图,在中,, 分别是的中点,且,延长到点,使,连接,若四边形是菱形,则______
    22、(4分)在一次测验中,初三(1)班的英语考试的平均分记为a分,所有高于平均分的学生的成绩减去平均分的分数之和记为m,所有低于平均分的学生的成绩与平均分相差的分数的绝对值的和记为n,则m与n的大小关系是 ______ .
    23、(4分)将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.
    例如:1423,,,因为,所以1423是“和平数”.
    (1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;
    (2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.
    例如:1423与4132为一组“相关和平数”
    求证:任意的一组“相关和平数”之和是1111的倍数.
    (3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;
    25、(10分)一次函数的图象经过和两点.
    (1)求一次函数的解析式.
    (2)当时,求的值.
    26、(12分)某景区的门票销售分两类:一类为散客门票,价格为元/张;另一类为团体门票(一次性购买门票张以上),每张门票价格在散客门票价格的基础上打折,某班部分同学要去该景点旅游,设参加旅游人,购买门票需要元
    (1)如果每人分别买票,求与之间的函数关系式:
    (2)如果购买团体票,求与之间的函数关系式,并写出自变量的取值范围;
    (3)请根据人数变化设计一种比较省钱的购票方式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为,其中4的倍数的跳动都在轴的右侧,那么第100次跳动得到的横坐标也在轴的右侧.横坐标为,横坐标为,横坐标为,以此类推可得到的横坐标.
    【详解】
    解:经过观察可得:和的纵坐标均为,和的纵坐标均为,和的纵坐标均为,因此可以推知和的纵坐标均为;其中4的倍数的跳动都在轴的右侧,那么第100次跳动得到的横坐标也在轴的右侧.横坐标为,横坐标为,横坐标为,以此类推可得到:的横坐标为(是4的倍数).
    故点的横坐标为:,纵坐标为:,点第100次跳动至点的坐标为.
    故选:.
    本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.
    2、C
    【解析】
    根据勾股定理求得斜边的长.
    【详解】
    解:∵Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,
    ∴AB==13cm,
    故选:C.
    本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方以及三角形面积公式的综合运用.
    3、A
    【解析】
    解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为,新数据是在原来每个数上加上100得到,则新平均数变为+100,则每个数都加了100,原来的方差s12= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,现在的方差s22= [(x1+100﹣﹣100)2+(x2+100﹣﹣100)2+…+(xn+100﹣﹣100)2]= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,方差不变.
    故选:A.
    方差的计算公式:s2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]
    4、A
    【解析】
    根据题意画出图形,利用勾股定理解答即可.
    【详解】
    如图,
    设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:

    两式相加得:a2+b2=31,
    根据勾股定理得到斜边==1.
    故选A.
    本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.
    5、B
    【解析】
    试题分析:根据一元二次方程的定义:
    A、x2+=0是分式方程;
    B、(2x﹣1)(x+2)=1,即2x2+3x﹣3=0是一元二次方程;
    C、ax2+bx=0中a=0时,不是一元二次方程;
    D、3x2﹣2xy﹣5y2=0是二元二次方程;
    故选B.
    考点:一元二次方程的定义
    6、B
    【解析】
    连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=6+DE=OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.
    【详解】
    解:连接OB、OC,如图,
    ∵△ABC为等边三角形,
    ∴∠ABC=∠ACB=60°,
    ∵点O是等边△ABC的内心,
    ∴OB=OC,OB、OC分别平分∠ABC和∠ACB,
    ∴∠ABO=∠OBC=∠OCB=30°,
    ∴∠BOC=120°,即∠BOE+∠COE=120°,
    而∠DOE=120°,即∠BOE+∠BOD=120°,
    ∴∠BOD=∠COE,
    在△BOD和△COE中,,
    ∴△BOD≌△COE(ASA),
    ∴BD=CE,OD=OE,①正确;
    ∴S△BOD=S△COE,
    ∴四边形ODBE的面积=S△OBC=S△ABC=××62=,③错误
    作OH⊥DE,如图,则DH=EH,
    ∵∠DOE=120°,
    ∴∠ODE=∠OEH=30°,
    ∴OH=OE,HE=OH=OE,
    ∴DE=OE,
    ∴S△ODE=•OE•OE=OE2,
    即S△ODE随OE的变化而变化,
    而四边形ODBE的面积为定值,
    ∴S△ODE≠S△BDE;②错误;
    ∵BD=CE,
    ∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=6+DE=6+OE,
    当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,
    ∴△BDE周长的最小值=6+3=9,④正确.
    故选B.
    本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质以及三角形面积的计算等知识;熟练掌握旋转的性质和等边三角形的性质,证明三角形全等是解题的关键.
    7、C
    【解析】
    检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    解:A、被开方数含分母,故A错误;
    B、被开方数含能开得尽方的因数或因式,故B错误;
    C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;
    D、被开方数含分母,故D错误;
    故选:C.
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
    8、D
    【解析】
    根据二次根式的性质由题意可知,我们在变形时要注意原式的结果应该是个负数,然后根据二次根式的性质化简而得出结果.
    【详解】
    解:原式
    故选:.
    本题考查了二次根式的性质与二次根式的化简,关键要把握住二次根式成立的条件.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据平行线分线段成比例定理列出比例式,代入计算得到答案.
    【详解】
    解:∵AB∥CD∥EF,
    ,.
    解得,BD=1,
    故答案为:1.
    本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
    10、
    【解析】
    根据正比例函数图象的增减性可求出m的取值范围.
    【详解】
    解:∵函数y=(2m-1)x是正比例函数,且y随x的增大而减小,
    ∴2m-1<0,
    解得
    故答案为
    本题考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.
    11、1
    【解析】
    根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.
    【详解】
    解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,
    ∴△ABC≌△A1BC1,
    ∴A1B=AB=6,
    ∴△A1BA 是等腰三角形,∠A1BA=30°,
    ∴S△A1BA= ×6×3=1,
    又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,
    S△A1BC1=S△ABC,
    ∴S 阴影=S△A1BA=1. 故答案为1.
    本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.
    12、1.
    【解析】
    试题解析:∵由题意可知,AQ是∠DAB的平分线,
    ∴∠DAQ=∠BAQ.
    ∵四边形ABCD是平行四边形,
    ∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,
    ∴∠DAQ=∠DAQ,
    ∴△AQD是等腰三角形,
    ∴DQ=AD=2.
    ∵DQ=2QC,
    ∴QC=DQ=,
    ∴CD=DQ+CQ=2+=,
    ∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.
    故答案为1.
    13、1
    【解析】
    先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=1,即得平移距离.
    【详解】
    解:在Rt△ABC中,∵∠ABC=30°,
    ∴AC=AB=5,
    ∵△ABC沿CB向右平移得到△DEF,
    ∴AD=BE,ADBE,
    ∴四边形ABED为平行四边形,
    ∵四边形ABED的面积等于20,
    ∴AC•BE=20,即5BE=20,
    ∴BE=1,即平移距离等于1.
    故答案为:1.
    本题考查了含30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.
    三、解答题(本大题共5个小题,共48分)
    14、(1)三种建房方案(2)A型住房48套,B型住房32套获得利润最大(3)当O<a<l时, x=48,W最大,当a=l时,a-1=O,三种建房方案获得利润相等,当a>1时,x=1,W最大.
    【解析】
    解:(1)设公司建A户型x套,则建B户型(80-x)套,
    由题意得: 209025x+28(80-x )2096
    解得:48x1 经检验,符合题意.
    x取整数,x=48、49、1.
    该公司有以下三种建房方案:
    ①A户型:48套,B户型32套;② A户型:49套,B户型31套;
    ③A户型:1套,B户型30套.
    (2)每套A户型获利:30—25=5万元,
    每套B户型获利:34—28=6万元.
    每套B户型获利﹥每套A户型获利,方案一获利最大.
    即建48套A户型,32套B户型时获利最大.
    (3)由题意得:A户型住房的售价提高a万元后:
    每套A户型获利(5+a)万元,每套B户型仍获利6万元.
    当5+a﹤6,即a﹤1时,方案一获利最大;
    当5+a=6, 即a=1时,三种方案获利一样多;
    当5+a﹥6,即a﹥1时,方案三获利最大.
    (1)首先设A种户型的住房建x套,则B种户型的住房建(80-x)套,然后根据题意列方程组,解方程组可求得x的取值范围,又由x取非负整数,即可求得x的可能取值,则可得到三种建房方案;
    (2)求出每套户型的获利,进行比较
    (3)因为a是不确定的值了,所以要根据a的取值判断该公司又将如何建房获得利润最大.
    15、x=1.
    【解析】
    观察可得最简公分母是(x-2)(x+2),方程两边同时乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】
    方程两边同乘以,得
    解得
    检验: 当时,,∴是原方程的解
    ∴原方程的解为.
    此题考查了分式方程的解法,需要掌握转化思想的应用,注意分式方程需检验.
    16、(1)89;八(1);(2)八(1)班得分最高.
    【解析】
    (1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作准确的分数最高即可;
    (2)利用加权平均数分别计算三个班的得分后即可得解.
    【详解】
    解:(1)服装统一方面的平均分为:=89分;
    动作准确方面最有优势的是八(1)班;
    故答案为:89;八(1);
    (2)∵八(1)班的平均分为:=84.7分;
    八(2)班的平均分为:=82.8分;
    八(3)班的平均分为:=83.9分;
    ∴得分最高的是八(1)班.
    本题考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.
    17、(1);(2)
    【解析】
    (1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.
    【详解】
    解:(1)
    =
    =
    (2)
    =
    =
    =
    本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.
    18、证明见解析.
    【解析】
    根据SAS可以证明△MAE≌△NCF.从而得到EM=FN,∠AEM=∠CFN.根据等角的补角相等,可以证明∠FEM=∠EFN,则EM∥FN.根据一组对边平行且相等的四边形是平行四边形即可证明.
    【详解】
    证明:∵四边形是平行四边形,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    在与中:
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴四边形是平行四边形.
    此题综合运用了平行四边形的性质和判定.能够根据已知条件和平行四边形的性质发现全等三角形是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4≤m≤1
    【解析】
    设平移后的直线解析式为y=-2x+m.根据平行四边形的性质结合点O、A、C的坐标即可求出点B的坐标,再由平移后的直线与边BC有交点,可得出关于m的一元一次不等式组,解不等式组即可得出结论.
    【详解】
    设平移后的直线解析式为y=-2x+m.
    ∵四边形OABC为平行四边形,且点A(2,0),O(0,0),C(1,2),
    ∴点B(3,2).
    ∵平移后的直线与边BC有交点,
    ∴,
    解得:4≤m≤1.
    本题考查了平行四边形的性质、平移的性质以及两条直线相交的问题,解题的关键是找出关于m的一元一次不等式组.
    20、5 1.
    【解析】
    由图象可求出当0≤x≤2时,y与x的函数关系式为y=5x,当x>2时,y与x的函数关系式为y=4x+2,然后根据所求解析式分别求出当x=1和x=4时y的值即可.
    【详解】
    解:当0≤x≤2时,设y与x的函数关系式为y=kx,
    2k=10,得k=5,
    ∴当0≤x≤2时,y与x的函数关系式为y=5x,
    当x=1时,y=5×1=5,
    当x>2时,设y与x的函数关系式为y=ax+b,
    ,得 ,
    即当x>2时,y与x的函数关系式为y=4x+2,
    当x=4时,y=4×4+2=1,
    故答案为:5,1.
    一次函数在实际生活中的应用是本题的考点,根据图象求出函数解析式是解题的关键.
    21、2或2;
    【解析】
    根据等面积法,首先计算AC边上的高,再设AD的长度,列方程可得x的值,进而计算AB.
    【详解】
    根据可得为等腰三角形
    分别是的中点,且


    四边形是菱形

    所以可得 中AC边上的高为:
    设AD为x,则CD=
    所以
    解得x= 或x=
    故答案为2或2
    本题只要考查菱形的性质,关键在于设合理的未知数求解方程.
    22、m=n
    【解析】
    根据“平均分的意义和平均分、总分之间的关系”进行分析解答即可.
    【详解】
    设初三(1)班这次英语考试中成绩高于平方分的有x人,低于平均分的有y人,等于平均分的有z人,则由题意可得:
    a(x+y+z)=(ax+m)+(ay-n)+az,
    ∴ax+ay+az=az+m+ay-n+az,
    ∴0=m-n,
    ∴m=n.
    故答案为:m=n.
    “能够根据:全班的总分=成绩高于平均分的同学的总得分+成绩低于平均分的同学的总得分+成绩等于平均分的同学的总得分得到等式a(x+y+z)=(ax+m)+(ay-n)+az”是解答本题的关键.
    23、y=﹣4x﹣1
    【解析】
    根据上加下减的法则可得出平移后的函数解析式.
    【详解】
    解:将直线y=﹣4x+3向下平移4个单位得到直线l,
    则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.
    故答案是:y=﹣4x﹣1
    本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)1001,9999;(2)见详解;(3)2754和1
    【解析】
    (1)根据和平数的定义,即可得到结论;
    (2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.
    (3)设这个“和平数”为 ,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,
    即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;
    【详解】
    解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,
    故答案为:1001,9999;
    (2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则
    =1100(a+b)+11(c+d)=1111(a+b);
    即两个“相关和平数”之和是1111的倍数.
    (3)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k,
    ∴2c+a=12k,
    即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),
    ①当a=2,d=4时,2(c+1)=12k,
    可知c+1=6k且a+b=c+d,
    ∴c=5则b=7,
    ②当a=4,d=8时,
    2(c+2)=12k,
    可知c+2=6k且a+b=c+d,
    ∴c=4则b=8,
    综上所述,这个数为:2754和1.
    本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.
    25、 (1) ;(2)6.
    【解析】
    (1)利用待定系数法,把点与代入解析式列出方程组即可求得解析式;
    (2)把x=3代入(1)中得到的解析式即可求得y值.
    【详解】
    解:(1)∵一次函数的图象经过点与,
    ∴,
    解得:,
    ∴一次函数的解析式为.
    (2)中,
    当时,.
    本题考查了一次函数,运用待定系数法求一次函数的解析式是必备技能,要熟练掌握.
    26、(1);(2)y=32x(x⩾10);(3)8人以下买散客票; 8人以上买团体票;恰好8人时,即可按10人买团体票,可买散客票.
    【解析】
    (1)买散客门票价格为40元/张,利用票价乘人数即可,即y=40x;
    (2)买团体票,需要一次购买门票10张及以上,即x≥10,利用打折后的票价乘人数即可;
    (3)根据(1)(2)分情况探讨得出答案即可.
    【详解】
    (1)散客门票:y=40x;
    (2)团体票:y=40×0.8x=32x(x⩾10);
    (3)因为40×8=32×10,
    所以当人数为8人,x=8时,两种购票方案相同;
    当人数少于8人,x8时,按团体票购票比较省钱.
    此题考查一次函数的应用,解题关键在于根据题意列出方程.
    题号





    总分
    得分
    A
    B
    成本(万元/套)
    25
    28
    售价(万元/套)
    30
    34
    服装统一
    动作整齐
    动作准确
    八(1)班
    80
    84
    87
    八(2)班
    97
    78
    80
    八(3)班
    90
    78
    85

    相关试卷

    河北省沧州市2024-2025学年九上数学开学教学质量检测模拟试题【含答案】:

    这是一份河北省沧州市2024-2025学年九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届四川省南充市南部县九上数学开学教学质量检测模拟试题【含答案】:

    这是一份2025届四川省南充市南部县九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】:

    这是一份2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map