![南阳市重点中学2024-2025学年数学九年级第一学期开学考试试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16287708/0-1729809426758/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![南阳市重点中学2024-2025学年数学九年级第一学期开学考试试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16287708/0-1729809426836/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![南阳市重点中学2024-2025学年数学九年级第一学期开学考试试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16287708/0-1729809426852/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
南阳市重点中学2024-2025学年数学九年级第一学期开学考试试题【含答案】
展开
这是一份南阳市重点中学2024-2025学年数学九年级第一学期开学考试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在三角形中,,平分交于点,且,,则点到的距离为( )
A.B.C.D.
2、(4分)如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是( )
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→矩形→平行四边形→正方形→平行四边形
C.平行四边形→菱形→平行四边形→矩形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形
3、(4分)已知菱形的两条对角线的长分别是6和8,则菱形的周长是( )
A.36B.30C.24D.20
4、(4分)使分式有意义的x的取值范围是( )
A.x≥1B.x≤1C.x>1D.x≠1
5、(4分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为,则所有正方形的面积的和是 .
A.28B.49C.98D.147
6、(4分)甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x个,那么所列方程是( )
A.B.C.D.
7、(4分)已知一次函数y=ax+b(a、b为常数且a≠0)的图象经过点(1,3)和(0,-2),则a-b的值为( )
A.-1B.-3C.3D.7
8、(4分)若x-,则x-y的值为( )
A.2B.1C.0D.-1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)点A(-2,3)关于x轴对称的点B的坐标是_____
10、(4分)化简﹣的结果是_____.
11、(4分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
12、(4分).在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是____________.
13、(4分)若,则关于函数的结论:①y随x的增大而增大;②y随x的增大而减小;③y恒为正值;④y恒为负值.正确的是________.(直接写出正确结论的序号)
三、解答题(本大题共5个小题,共48分)
14、(12分)为了贯彻落实区中小学“阅读·写字·演讲”三项工程工作,我区各校大力推广阅读活动,某校初二(1)班为了解2月份全班学生课外阅读的情况,调查了全班学生2月份读书的册数,并根据调查结果绘制了如下不完整的条形统计图和扇形统计图:
根据以上信息解决下列问题:
(1)参加本次问卷调查的学生共有______人,其中2月份读书2册的学生有______人;
(2)补全条形统计图,并求扇形统计图中读书3册所对应扇形的圆心角度数.
15、(8分)如图,在正方形网格中,△TAB 的顶点坐标分别为 T(1,1)、A(2,3)、B(4,2).
(1)以点 T(1,1)为位似中心,在位似中心的 同侧将△TAB 放大为原来的 3 倍,放大 后点 A、B 的对应点分别为 A'、B',画出△TA'B':
(2)写出点 A'、B'的坐标:A'( )、B'( );
(3)在(1)中,若 C(a,b)为线段 AB 上任一 点,则变化后点 C 的对应点 C'的坐标为 ( ).
16、(8分)计算:(1) ; (2)
17、(10分)如图,已知等腰三角形的底边长为10,点是上的一点,其中.
(1)求证:;
(2)求的长.
18、(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系式.根据题中所给信息解答以下问题:
(1)甲、乙两地之间的距离为______km;图中点C的实际意义为:______;慢车的速度为______,快车的速度为______;
(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;
(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果多项式是一个完全平方式,那么k的值为______.
20、(4分)一组数据,,,,,的方差是_________.
21、(4分)因式分解:_________.
22、(4分)如图,四边形ABCD为菱形,点A在y轴正半轴上,AB∥x轴,点B,C在反比例函数上,点D在反比例函数上,那么点D的坐标为________.
23、(4分)一组数据 ,则这组数据的方差是 __________ .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为: .
(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;
(3)求△AEF周长的最小值.
25、(10分)如图,在菱形ABCD中,点P是BC的中点,仅用无刻度的直尺按要求画图. (保
留作图痕迹,不写作法)
(1)在图①中画出AD的中点H;
(2)在图②中的菱形对角线BD上,找两个点E、F,使BE=DF.
26、(12分)如图,平行四边形ABCD的两条对角线相交于O,且AC平分∠DAB
(1)求证:四边形ABCD是菱形
(2)若AC=16,BD=12,试求点O到AB的距离.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
如图,在△ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=1CD,BC=9cm,则点D到AB的距离.
【详解】
如图,过点D作DE⊥AB于E,
∵BD:DC=1:1,BC=6,
∴DC=×6=1,
∵AD平分∠BAC,∠C=90∘,
∴DE=DC=1.
故选:C.
本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.
2、C
【解析】
先判断出点E在移动过程中,四边形AECF始终是平行四边形,当∠AFC=80°时,四边形AECF是菱形,当∠AFC=90°时,四边形AECF是矩形,即可求解.
【详解】
解:∵点O是平行四边形ABCD的对角线得交点,
∴OA=OC,AD∥BC,
∴∠ACF=∠CAD,∠ADB=∠DBC=20°
∵∠COF=∠AOE,OA=OC,∠DAC=∠ACF
∴△AOE≌△COF(ASA),
∴AE=CF,
∵AE∥CF,
∴四边形AECF是平行四边形,
∵∠ADB=∠DBC=20°,∠ACB=50°,
∴∠AFC>20°
当∠AFC=80°时,∠FAC=180°-80°-50°=50°
∴∠FAC=∠ACB=50°
∴AF=FC
∴平行四边形AECF是菱形
当∠AFC=90°时,平行四边形AECF是矩形
∴综上述,当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是:平行四边形→菱形→平行四边形→矩形→平行四边形.
故选:C.
本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力,题目比较好,难度适中.
3、D
【解析】
解:如图所示,根据题意得:AO=×8=4,BO=×6=1.∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=2.故选D.
4、D
【解析】
要使分式有意义,则必须分母不等于0.
【详解】
使分式有意义,则x-1≠0,所以x≠1.
故选D
本题考核知识点:分式有意义的条件. 解题关键点:记住要使分式有意义,则必须分母不等于0.
5、D
【解析】
根据勾股定理即可得到正方形A的面积加上B的面积等于E的面积,同理,C,D的面积的和是F的面积,E,F的面积的和是M的面积.即可求解.
【详解】
解:根据勾股定理可得:SA+SB=SE,SC+SD=SM,SE+SF=SM
所以,所有正方形的面积的和是正方形M的面积的3倍:即49×3=147cm1.
故选:D
理解正方形A,B的面积的和是E的面积是解决本题的关键.若把A,B,E换成形状相同的另外的图形,这种关系仍成立.
6、A
【解析】
甲每小时做x个零件,则乙每小时做(x+6)个零件,根据工作时间=工作总量÷工作效率结合甲做60个所用时间与乙做90个所用时间相等,即可得出关于x的分式方程,此题得解.
【详解】
甲每小时做x个零件,则乙每小时做(x+6)个零件,
依题意,得:,
故选A.
本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
7、D
【解析】
将点(0, -2)代入该一次函数的解析式,得
,即b=-2.
将点(1, 3)代入该一次函数的解析式,得
,
∵b=-2,
∴a=5.
∴a-b=5-(-2)=7.
故本题应选D.
8、B
【解析】
直接利用二次根式的性质得出y的值,进而得出答案.
【详解】
解:∵与都有意义,
∴y=0,
∴x=1,
故选x-y=1-0=1.
故选:B.
此题考查二次根式有意义的条件,正确把握二次根式的定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(-2,-3).
【解析】
根据在平面直角坐标系中,关于x轴对称的两个点的横坐标相同,纵坐标相反即可得出答案.
解:点A(-2,3)关于x轴对称的点B的坐标是(-2,-3).
故答案为(-2,-3).
10、﹣
【解析】
原式通分并利用同分母分式的减法法则计算即可得到结果
【详解】
原式=
=
=
故答案为:
此题考查分式的加减法,掌握运算法则是解题关键
11、1
【解析】
【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
∴m1﹣1m=0且m≠0,
解得,m=1,
故答案是:1.
【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
12、-4或1
【解析】
分析:点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x-1|=5,从而解得x的值.
解答:解:∵点M(1,3)与点N(x,3)之间的距离是5,
∴|x-1|=5,
解得x=-4或1.
故答案为-4或1.
13、①③
【解析】
根据题意和正比例函数的性质可以判各个小题中的结论是否正确,本题得以解决.
【详解】
解:,函数,y随x的增大而增大,故①正确,②错误;
当时,,故③正确,④错误.
故答案为:①③.
本题考查正比例函数的性质,解答本题的关键是明确题意,利用正比例函数的性质解答.
三、解答题(本大题共5个小题,共48分)
14、(1)50;17;(2)补全条形图见详解;144°.
【解析】
(1)根据条形统计图读书4册的人数为4人,扇形图中占比8%,即可求得总人数;再根据读书2册人数占比34%,即可求得读书2册的人数;
(2)根据条形图中数据以及(1)中所求,可容易求得读书3册的人数,读书3册的人数除以总人数即为扇形图中所占百分比,再乘以360°,即为读书3册所对应扇形的圆心角度数.
【详解】
解:(1)根据条形统计图及扇形统计图知:本次问卷调查的学生共有人,
读书2册的学生有人.
(2)根据条形统计图知:读书3册的学生有人,补全如图:
读书3册的学生人数占比.
∴扇形统计图中读书3册所对应扇形的圆心角度数为:.
本题考查直方图,难度一般,是中考的常考知识点,熟练掌握扇形图、条形图的相关知识有顺利解题的关键.
15、(1)详见解析;(1)A′(4,7),B′(10,4)(3)(3a-1,3b-1)
【解析】
(1)根据题目的叙述,在位似中心的同侧将△TAB放大为原来的3倍,得到对应点坐标,正确地作出图形即可,
(1)根据图象确定各点的坐标即可.
(3)根据(1)中变换的规律,即可写出变化后点C的对应点C′的坐标.
【详解】
解:(1)如图所示:
(1)点A′,B′的坐标分别为:A′(4,7),B′(10,4);
故答案为:(4,7);(10,4);
(3)变化后点C的对应点C′的坐标为:C′(3a-1,3b-1)
故答案为:3a-1,3b-1.
本题考查了位似变换作图的问题,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.
16、
【解析】
(1)先化简二次根式,再加减;(2)根据平方差公式进行计算.
【详解】
(1);
(2)
考核知识点:二次根式的运算.掌握运算法则是关键.
17、(1)见解析;(2).
【解析】
(1)根据勾股定理的逆定理证得△BCD为直角三角形即可;
(2)设AB=x,则AD=x-6,在Rt△ABD中,根据勾股定理建立方程,解出方程即可.
【详解】
(1)证明:∵
∵为直角三角形,
∴,
∴;
(2)解:设为,则
∵,
∴,
在中
,即,
解得
∴.
故答案为(1)见解析;(2).
本题考查了勾股定理及其逆定理.
18、(1)960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6;(3)第二列快车出发1.5h,与慢车相距200km.
【解析】
(1)x=0时两车之间的距离即为两地间的距离,根据横坐标和两车之间的距离增加变慢解答,分别利用速度=路程÷时间列式计算即可得解;
(2)求出相遇的时间得到点B的坐标,再求出两车间的距离,得到点C的坐标,然后设线段BC的解析式为y=kx+b,利用待定系数法求一次函数解析式解答;
(3)设第二列快车出发a小时两车相距200km,然后分相遇前与相遇后相距200km两种情况列出方程求解即可.
【详解】
解:(1)由图象可知,甲、乙两地间的距离是960km;
图中点C的实际意义是:当慢车行驶6h时,快车到达乙地;
慢车速度是:960÷12=80km/h,
快车速度是:960÷6=160km/h;
故答案为:960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;
(2)根据题意,两车行驶960km相遇,所用时间=4h,
所以,B点的坐标为(4,0),
2小时两车相距2×(160+80)=480km,
所以,点C的坐标为(6,480),
设线段BC的解析式为y=kx+b,则,
解得k=240,b=-960,
所以,线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6;
(3)设第二列快车出发a小时两车相距200km,
分两种情况,①若是第二列快车还没追上慢车,相遇前,则4×80+80a-160a=200,
解得a=1.5,
②若是第二列快车追上慢车以后再超过慢车,则160a-(4×80+80a)=200,
解得a=6.5,
∵快车到达甲地仅需要6小时,
∴a=6.5不符合题意,舍去,
综上所述,第二列快车出发1.5h,与慢车相距200km.
本题考查了一次函数的应用,待定系数法求一次函数解析式,相遇问题,追击问题,综合性较强,(3)要注意分情况讨论并考虑快车到达甲地的时间是6h,这也是本题容易出错的地方.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8或-4
【解析】
根据完全平方公式的定义即可求解.
【详解】
=为完全平方公式,故=±6,
即得k=8或-4.
此题主要考查完全平方公式的形式,解题的关键是熟知完全平方公式.
20、
【解析】
先求得数据的平均数,然后代入方差公式计算即可.
【详解】
解:数据的平均数=(2-3+3+6+4)=2,
方差.
故答案为.
本题考查方差的定义,牢记方差公式是解答本题的关键.
21、
【解析】
直接提取公因式即可.
【详解】
.
故答案为:.
本题考查了因式分解——提取公因式法,掌握知识点是解题关键.
22、
【解析】
分析:首先设出菱形边长为a,由AB=a,得出C、D的坐标,过点C作CE⊥AB,由勾股定理可得D点坐标.
详解:设菱形边长为a,即AB=a, 设C点坐标为(b,), ∵BC∥x轴,∴D点纵坐标为:,∴D点横坐标为:,则x= -4b, ∴D(-4b, ), ∵CD=a, ∴4b+b=a, a=5b,
过点C作CE⊥AB,则BE=a-AE=a-b=4b,BC=a=5b,
由勾股定理:CE=3b,CE= ,
∴b²=1-=, b=,∴D.故答案为.
点睛:本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,解题的关键是设出菱形边长,利用反比例函数的性质表示出菱形各顶点的坐标,进而求解.
23、1
【解析】
分析:先求出这5个数的平均数,然后利用方差公式求解即可.
详解:平均数为=(1+1+3+4+5)÷5=3,
S1= [(1-3)1+(1-3)1+(3-3)1+(4-3)1+(5-3)1]=1.
故答案为:1.
点睛:本题考查了方差的知识,牢记方差的计算公式是解答本题的关键,难度不大.
二、解答题(本大题共3个小题,共30分)
24、(1)AE=EF=AF;(2)详见解析;(3)6.
【解析】
(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;
(2)欲证明BE=CF,只要证明△BAE≌△CAF即可;
(3)根据垂线段最短可知;当AE⊥BC时,△AEF的周长最小;
【详解】
(1)AE=EF=AF.
理由:如图1中,连接AC,
∵四边形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等边三角形,
∴∠BAC=∠DAC=60°
∵BE=EC,
∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°,
∴∠CAF=∠DAF=30°,
∴AF⊥CD,
∴AE=AF(菱形的高相等)
∴△AEF是等边三角形,
∴AE=EF=AF.
故答案为AE=EF=AF;
(2)证明:如图2,
∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
∴△BAE≌△CAF(ASA)
∴BE=CF.
(3)由(1)可知△AEF是等边三角形,
∴当AE⊥BC时,AE的长最小,即△AEF的周长最小,
∵AE=EF=AF=2,
∴△AEF的周长为6.
本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.
25、见解析
【解析】
分析:(1)根据菱形的对角线互相垂直平分可得AC、BD的中点,然后根据三角形的中位线判定与性质,即可画图得到H点;
(2)根据①的作图中的H点,连接AP,HC,交BD于E、F点,则BE=DF.
详解:图①作法如图所示:
图②作法如图所示:
点睛:此题主要考查了菱形的判定与性质,三角形的中位线的判定与性质,以及三角形全等的判定与性质,平行四边形的判定与性质,综合性比较强,灵活利用判定与性质的进行推理是画图的关键.
26、(1)证明见解析;(2)4.8
【解析】
(1)由平行四边形的对边平行得∠DAC=∠BCA,由角平分线的性质得∠DAC=∠BAC,即可知∠BCA=∠BAC,从而得AB=BC,即可得证;
(2)由菱形的对角线互相垂直且平分得AO=8、BO=6且∠AOB=90°,利用勾股定理得AB=10,根据S△AOB=AB•h=AO•BO即可得答案.
【详解】
(1)∵平行四边形ABCD,
∴AD//BC,
∴∠DAC=∠BCA,
∵AC平分∠DAB,
∴∠CAD=∠BAC,
∴∠ACB=∠BAC,
∴AB=BC,
∴ABCD是菱形;
(2)∵四边形ABCD是菱形,AC=16,BD=12,
所以AO=8,BO=6,
∵∠AOB=90°,
∴AB==10,
设O点到AB的距离为h,则
S△AOB=AB•h=AO•BO,
即:×10h=×8×6,
解得h=4.8,
所以O点到AB的距离为4.8.
本题考查了平行四边形的性质,菱形的判定与性质及勾股定理,熟练掌握菱形的判定与性质是见本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份梅州市重点中学2024-2025学年九年级数学第一学期开学考试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年通辽市重点中学数学九年级第一学期开学考试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年绥化市重点中学数学九年级第一学期开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)