内蒙古巴彦淖尔市临河区八校联盟2025届数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)正比例函数的图象经过点,,当时,,则的取值范围是( )
A.B.C.D.
2、(4分)如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( )
A.6B.11C.12D.18
3、(4分)如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40 名同学一周参加体育锻炼时间的中位数,众数分别是( )
A.10.5,16B.8.5,16C.8.5,8D.9,8
4、(4分)如图,把三角形ABC沿直线BC方向平移得到三角形DEF,则下列结论错误的是( )
A.∠A=∠DB.BE=CF
C.AC=DED.AB∥DE
5、(4分)如图所示的数字图形中是中心对称图形的有( )
A.1个B.2个C.3个D.4个
6、(4分)若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为( )
A.2B.4C.4D.8
7、(4分)已知的三边,,满足,则的面积为( )
A.B.C.D.
8、(4分)在平面直角坐标系中,将抛物线向右平移2个单位,得到的抛物线的解析式是( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:(1)=______;(2)=______;(3) =______.
10、(4分)我市某一周每天的最低气温统计如下(单位:℃):﹣1,﹣4,6,0,﹣1,1,﹣1,则这组数据的众数为__________.
11、(4分)计算:________.
12、(4分)将正比例函数y= -x的图象向上平移,则平移后所得图象对应的函数解析式可能是______________(答案不唯一,任意写出一个即可).
13、(4分)已知一元二次方程,则根的判别式△=____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)用适当的方法解下列方程:(2x-1)(x+3)=1.
15、(8分)某专卖店准备购进甲、乙两种运动鞋,其进价和售价如下表所示.已知用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
(2)要使购进的甲,乙两种运动鞋共200双的总利润不少于21700元且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店决定对甲种运动鞋每双优惠a(6016、(8分)完成下列运算
(1)计算:
(2)计算:
(3)计算:
17、(10分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
根据以上信息,请解答下面的问题;
(1)补全甲选手10次成绩频数分布图.
(2)a= ,b= ,c= .
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
18、(10分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.
(1)求证:四边形ABEF是菱形;
(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)数据﹣2,﹣1,0,3,5的方差是 .
20、(4分)若是李华同学在求一组数据的方差时,写出的计算过程,则其中的=_____.
21、(4分)小明统计了他家今年1月份打电话的次数及通话时间,并列出了频数分布表(如表)
如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min约为_____次.
22、(4分)如图,是内一点,且在的垂直平分线上,连接,.若,,,则点到的距离为_________.
23、(4分)某人参加一次应聘,计算机、英语、操作成绩(单位:分)分别为 80、90、82, 若三项成绩分别按 3:5:2,则她最后得分的平均分为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)小梅在浏览某电影评价网站时,搜索了最近关注到的甲、乙、丙三部电影,网站通过对观众的抽样调查,得到这三部电影的评分数据统计图分别如下:
甲、乙、丙三部电影评分情况统计图
根据以上材料回答下列问题:
(1)小梅根据所学的统计知识,对以上统计图中的数据进行了分析,并通过计算得到这三部电影抽样调查的样本容量,观众评分的平均数、众数、中位数,请你将下表补充完整:
甲、乙、丙三部电影评分情况统计表
(2)根据统计图和统计表中的数据,可以推断其中_______电影相对比较受欢迎,理由是
_______________________________________________________________________.(至少从两个不同的角度说明你推断的合理性)
25、(10分)等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.
(1)求证:AM=CM;
(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.
①求证:AM=CM,AM⊥CM;
②若AB=4,求△AOM的面积.
26、(12分)已知中,其中两边的长分别是3,5,求第三边的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.
【详解】
解:由题意可知:在正比例函数y=(1-2m)x中,y随x的增大而减小
由一次函数性质可知应有:1-2m<0,即-2m<-1,
解得:
故选:C
此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.
2、C
【解析】
试题分析:这个正多边形的边数:360°÷30°=12,故选C.
考点:多边形内角与外角.
3、D
【解析】
将这组数据按从小到大的顺序排列后,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,为1.故选D.
4、C
【解析】
试卷分析:根据平移的性质结合图形,对选项进行一一分析,选出正确答案.
解:∵三角形ABC沿直线BC沿直线BC方向平移到△DEF,
∴△ABC≌△DEF,
∴∠A=∠D,BC=EF,∠B=∠DEF,
故A选项结论正确,
∵BC=EF,
∴BC−EC=EF−EC,
即BE=CF,
故B选项结论正确,
∵∠B=∠DEF,
∴AB∥DE,
故D选项结论正确,
AC=DF,DE与DF不相等,
综上所述,结论错误的是AC=DE.
故选C.
5、C
【解析】
根据中心对称图形的概念解答即可.
【详解】
A.是中心对称图形,
B.是中心对称图形,
C.是中心对称图形,
D.不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它本身重合.
综上所述:是中心对称图形的有3个,
故选C.
本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.熟练掌握中心对称图形的定义是解题关键.
6、C
【解析】
设等腰直角三角形的直角边长为x,根据面积为8,可列方程求解.
解;设等腰直角三角形的边长为x,
x2=8,
x=1或x=-1(舍去).
所以它的直角边长为1.
故选C.
“点睛”本题考查等腰直角三角形的性质,等腰直角三角形的两个腰相等,两腰夹角为90°,根据面积为8可列方程求解.
7、B
【解析】
根据非负数的性质得到b=4,c=3,a=5,根据勾股定理的逆定理得到△ABC是直角三角形,由三角形的面积公式即可得到结论.
【详解】
解:∵,
∴
即 ,
∴b=4,c=3,a=5,
∴b2+c2=a2,
∴△ABC是直角三角形,
∴△ABC的面积=×3×4=1.
故选B.
本题考查非负数的性质,勾股定理的逆定理,三角形的面积的计算,熟练掌握勾股定理的逆定理是解题的关键.
8、B
【解析】
试题解析:将抛物线向右平移2个单位,
得到的抛物线的解析式是
故选B.
点睛:二次函数图像的平移规律:左加右减,上加下减.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据二次根式的乘法公式:和除法公式计算即可.
【详解】
解:(1);
(2);
(3).
故答案为:;;.
此题考查的是二次根式的化简,掌握二次根式的乘法公式:和除法公式是解决此题的关键.
10、-1
【解析】
众数是一组数据中出现次数最多的数据.
【详解】
观察﹣1,﹣4,6,0,﹣1,1,﹣1
其中﹣1出现的次数最多,
故答案为: .
本题考查了众数的概念,解题的关键在于对众数的理解.
11、
【解析】
原式化简后,合并即可得到结果.
【详解】
解:原式= ,
故答案为:.
此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.
12、y=-x+1
【解析】
根据平面坐标系中函数图像的平移规律“左加右减,上加下减”可知,当平移1个单位时,平移后的函数解析式为y=-x+1.
【详解】
由题意得:y = -x的图像向上平移,得到y=-x+1,故本题答案是y=-x+1.
本题主要考查图形的平移和一次函数的图像性质,学生掌握即可.
13、0
【解析】
根据一元二次方程根的判别式,将本题中的a、b、c带入即可求出答案.
【详解】
解:∵一元二次方程,
整理得:,
可得:,
∴根的判别式;
故答案为0.
本题考查一元二次方程根的判别式,首先把方程化成一般形式,得出一元二次方程的二次项系数、一次项系数与常数项,再根据根的判别式公式求解,解题中需注意符号问题.
三、解答题(本大题共5个小题,共48分)
14、x2=-,x2=2.
【解析】
先把方程化为一般式,然后利用因式分解法解方程.
【详解】
解:2x2+5x-7=0,
(2x+7)(x-2)=0,
2x+7=0或x-2=0,
所以x2=,x2=2.
本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
15、(1)m=150;(2)该专卖店有9种进货方案;(3)此时应购进甲种运动鞋82双,购进乙种运动鞋118双.
【解析】
(1)根据“用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同”列出方程并解答;
(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200−x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;
(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.
【详解】
(1)依题意得: ,
解得:m=150,
经检验:m=150是原方程的根,
∴m=150;
(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,
解得:81≤x≤90,
∵x为正整数,
∴该专卖店有9种进货方案;
(3)设总利润为W元,则
W=(300﹣150﹣a)x+(200﹣120)(200﹣x)=(70﹣a)x+16000,
①当60<a<70时,70﹣a>0,W随x的增大而增大,当x=90时,W有最大值,
即此时应购进甲种运动鞋90双,购进乙种运动鞋110双;
②当a=70时,70﹣a=0,W=16000,(2)中所有方案获利都一样;
③当70<a<80时,70﹣a<0,W随x的增大而减小,当x=82时,W有最大值,
即此时应购进甲种运动鞋82双,购进乙种运动鞋118双.
本题考查了一次函数的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系;解题时需要根据一次项系数的情况分情况讨论.
16、(1)(2)1;(3)
【解析】
(1)先把二次根式化简,然后合并即可;
(2)根据二次根式的除法法则运算;
(3)利用乘法公式展开,然后合并即可.
【详解】
解:(1)原式=6﹣4+
=2+;
(2)原式=
=4﹣3
=1;
(3)原式
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
17、(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
【解析】
(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;
(2)根据平均数公式、中位数的求法和方差公式计算得到答案;
(3)从平均数和方差进行分析即可得到答案.
【详解】
解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,
补全图形如下:
(2)a==8(环),
c=×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,
b==7.5,
故答案为:8、1.2、7.5;
(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.
18、(1)见解析;(2)AE=10,四边形ABEF的面积=50.
【解析】
(1)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由AF=AB得出BE=AF,即可得出结论.
(2)根据菱形的性质可得AB=10,AE⊥BF,BO=FB=5,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.菱形的面积=对角线乘积的一半.
【详解】
(1)证明∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴BE=AB,且AF=AB,
∴BE=AF,
又∵BE∥AF,
∴四边形ABEF是平行四边形,
∵AF=AB,
∴四边形ABEF是菱形;
(2)∵四边形ABEF为菱形,且周长为40,BF=10
∴AB=BE=EF=AF=10,AE⊥BF,BO=FB=5,AE=2AO,
在Rt△AOB中,AO=,
∴AE=2AO=10.
∴四边形ABEF的面积=BF•AE=×10×10=50
本题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
试题分析:先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.
解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,
则这组数据的方差是:
[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;
故答案为.
20、1
【解析】
一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,所以其中的是、、、的平均数,据此求解即可.
【详解】
解:,
是、、、的平均数,
故答案为:1.
此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
21、1.
【解析】
根据表格中的数据可以计算出小明家全年通话时间不超过5min的次数,本题得以解决.
【详解】
由题意可得,
小明家全年通话时间不超过5min约为:1000×=1(次),
故答案为:1.
本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
22、
【解析】
连接OB,过点O作OD⊥AB于D,先证明△ABC为直角三角形,再由S△ABO=AO·OB=AB·OD求解即可.
【详解】
解:如图,连接OB,过点O作OD⊥AB于D,
∵在的垂直平分线上,
∴OB=OC,
∵,,,
∴OA2+OB2=32+42=25=AB2,
∴△ABC为直角三角形,
∵S△ABO=AO·OB=AB·OD,
∴OD= =.
故答案为.
此题主要考查了垂直平分线的性质,勾股定理的逆定理及三角形的面积。正确的添加辅助线是解决问题的关键.
23、85.4 分
【解析】
根据加权平均数的概念,注意相对应的权比即可求解.
【详解】
8030%+9050%+8220%=85.4
本题考查了加权平均数的求法,属于简单题,熟悉加权平均数的概念是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)填表见解析;(2)丙;①丙电影得分的平均数最高;②丙电影得分没有低分.
【解析】
(1)根据众数、中位数和平均数的定义,结合条形图分别求解可得;
(2)从平均数、中位数和众数的意义解答,合理即可.
【详解】
(1)甲电影的众数为5分,
乙电影的样本容量为35+30+13+12=100,中位数是=4分,
丙电影的平均数为=(3)78分
补全表格如下表所示:
甲、乙、丙三部电影评分情况统计表
(2)丙,①丙电影得分的平均数最高;②丙电影得分没有低分.
此题考查了条形统计图,表格,中位数,众数,平均数,弄清题意是解本题的关键.
25、(1)见解析;(1)①见解析,②1
【解析】
(1)直接利用直角三角形斜边的中线等于斜边的一半,即可得出结论;
(1)①延长CM交OB于T,先判断出△CDM≌△TBM得出CM=TM,DC=BT=OC,进而判断出△OAC≌△BAT,得出AC=AT,即可得出结论;
②先利用等腰直角三角形的性质求出再求出OD,DC=CO=,再用勾股定理得出CT,进而判断出CM=AM,得出AM=OM,进而求出ON,再根据勾股定理求出MN,即可得出结论.
【详解】
解:(1)证明:∵∠OAB=90°,
∴△ABD是直角三角形,
∵点M是BD的中点,
∴AM=BD,
∵DC⊥OB,
∴∠BCD=90°,
∵点M是BD的中点,
∴CM=BD,
∴AM=CM;
(1)①如图②,
在图①中,∵AO=AB,∠OAB=90°,
∴∠ABO=∠AOB=45°,
∵DC⊥OB,
∴∠OCD=90°,
∴∠ODC=∠AOB,
∴OC=CD,
延长CM交OB于T,连接AT,
由旋转知,∠COB=90°,DC∥OB,
∴∠CDM=∠TBM,
∵点M是BD的中点,
∴DM=BM,
∵∠CMD=∠TMB,
∴△CDM≌△TBM(ASA),
∴CM=TM,DC=BT=OC,
∵∠AOC=∠BOC﹣∠AOB=45°=∠ABO,
∵AO=AB,
∴△OAC≌△BAT(SAS),
∴AC=AT,∠OAC=∠BAT,
∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,
∴△CAT是等腰直角三角形,
∵CM=TM,
∴AM⊥CM,AM=CM;
②如图③,在Rt△AOB中,AB=4,
∴OA=4,OB==AB=4,
在图①中,点D是OA的中点,
∴OD=OA=1,
∵△OCD是等腰直角三角形,
∴DC=CO=ODsin45°==,
由①知,BT=CD,
∴BT=,
∴OT=OB﹣TB=3,
在Rt△OTC中,CT==1,
∵CM=TM=CT==AM,
∵OM是Rt△COT的斜边上的中线,
∴OM=CT=,
∴AM=OM,
过点M作MN⊥OA于N,则ON=AN=OA=1,
根据勾股定理得,MN==1,
∴S△AOM=OA•MN=×4×1=1.
此题是几何变换综合题,主要考查了旋转的性质,直角三角形的性质,全等三角形的判定和性质,勾股定理及三角函数的应用,构造出全等三角形是解本题的关键.
26、4或
【解析】
分5是斜边长、5是直角边长两种情况,根据勾股定理计算即可.
【详解】
解:当5是斜边长时,第三边长,
当5是直角边长时,第三边长,
则第三边长为4或.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.
题号
一
二
三
四
五
总分
得分
批阅人
运动鞋价格
甲
乙
进价元/双)
m
m-30
售价(元/双)
300
200
选手
A平均数
中位数
众数
方差
甲
a
8
8
c
乙
7.5
b
6和9
2.65
通话时间x/min
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数(通话次数)
20
16
9
5
电影
样本容量
平均数
众数
中位数
甲
100
(3)45
5
乙
(3)66
5
丙
100
3
(3)5
电影
样本容量
平均数
众数
中位数
甲
100
(3)45
5
5
乙
100
(3)66
5
4
丙
100
(3)78
3
(3)5
内蒙古巴彦淖尔市临河区第二中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份内蒙古巴彦淖尔市临河区第二中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
内蒙古巴彦淖尔市临河区2025届数学九年级第一学期开学调研模拟试题【含答案】: 这是一份内蒙古巴彦淖尔市临河区2025届数学九年级第一学期开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
内蒙古巴彦淖尔市临河区八校联盟2023-2024学年九上数学期末质量检测试题含答案: 这是一份内蒙古巴彦淖尔市临河区八校联盟2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,真命题是等内容,欢迎下载使用。