内蒙古翁牛特旗2024年九年级数学第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列语句中,属于命题的是( )
A.任何一元二次方程都有实数解B.作直线 AB 的平行线
C.∠1 与∠2 相等吗D.若 2a2=9,求 a 的值
2、(4分)点(﹣2,﹣3)关于原点的对称点的坐标是( )
A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)
3、(4分)使有意义的取值范围是( )
A.B.C.D.
4、(4分)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距高是;③AF=CF;④△ABF 的面积为其中一定成立的有( )个.
A.1B.2C.3D.4
5、(4分)点关于原点对称的点的坐标为( )
A.B.C.D.
6、(4分)如果ab>0,a+b<0,那么下面各式:① ; ②=1;③=-b.其中正确的是( )
A.①②B.①③C.①②③D.②③
7、(4分)近几年,手机支付用户规模增长迅速,据统计2015年手机支付用户约为3.58亿人,连续两年增长后,2017年手机支付用户达到约5.27亿人.如果设这两年手机支付用户的年平均增长率为x,则根据题意可以列出方程为( )
A.B.C.D.
8、(4分)如图,M是的边BC的中点,平分,于点N,延长BN交AC于点B,已知,,,则的周长是( )
A.43B.42C.41D.40
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=的自变量x的取值范围为____________.
10、(4分)如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.
11、(4分)的非负整数解为______.
12、(4分)在实数范围内分解因式:5-x2=_____.
13、(4分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.
(1)求证:四边形ACED是平行四边形;
(2)若AB=AC,试说明四边形AEBD是矩形.
15、(8分)如图,在直角坐标系中,A(﹣1,2),B(﹣4,﹣2).
(1)分别作点A,B关于原点的对称点C,D,并写出点C,点D的坐标;
(2)依次连接AB,BC,CD,DA,并证明四边形ABCD是平行四边形.
16、(8分)阅读材料I:
教材中我们学习了:若关于的一元二次方程的两根为,根据这一性质,我们可以求出己知方程关于的代数式的值.
问题解决:
(1)已知为方程的两根,则: __ _,__ _,那么_ (请你完成以上的填空)
阅读材料:II
已知,且.求的值.
解:由可知
又且,即
是方程的两根.
问题解决:
(2)若且则 ;
(3)已知且.求的值.
17、(10分)如图,在四边形中,,,,是的中点.点以每秒个单位长度的速度从点出发,沿向点运动;点同时以每秒个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.
18、(10分)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形.
(1)求证:▱ABCD为矩形;
(2)若AB=4,求▱ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).
20、(4分)若n边形的每个内角都等于150°,则n=_____.
21、(4分)在Rt△ABC中,∠C=90°,∠A=30°,BC=6,那么AB=_____.
22、(4分)化简=_____.
23、(4分)某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.
(1)求证:AG=C′G;
(2) 求△BDG的面积.
25、(10分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)
(1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:
(2)在(1)所画的平行四边形中任选-一个,求出其面积.
26、(12分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于C、D两点, C点的坐标是(4,-1),D点的横坐标为-1.
(1)求反比例函数与一次函数的关系式;
(1)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
用命题的定义进行判断即可(命题就是判断一件事情的句子).
【详解】
解:A项是用语言可以判断真假的陈述句,符合命题定义,是命题,B、C、D三项均不是判断一件事情的句子,都不是命题,故选A.
本题考查了命题的定义:命题就是判断一件事情的句子. 一般来说,命题都可以表示成“如果…那么…”的形式,如本题中的A项就可表示成“如果一个方程是一元二次方程,那么这个方程有实数解”,而其它三项皆不可.
2、A
【解析】
平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.
【详解】
解:点(﹣2,﹣3)关于原点的对称点的坐标是(2,3),
故选:A.
本题考查关于原点对称的点的坐标特征,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.
3、C
【解析】
根据二次根式的非负性可得,解得:
【详解】
解:∵使有意义,
∴
解得
故选C
本题考查二次根式有意义的条件,熟练掌握二次根式的非负性为解题关键
4、C
【解析】
根据菱形的性质,逐个证明即可.
【详解】
① 四边形ABCD为菱形
AB=BC
∠DAB=60°
△ABF≌△CBF
因此 ①正确.
②过E作EM垂直于AB的延长线于点M
CE=2
BE=4
∠DAB=60°
因此点E到AB的距高为
故②正确.
③根据①证明可得△ABF≌△CBF
AF=CF
故③正确.
④ 和 的高相等
所以
△ABF≌△CBF
故④错误.
故有3个正确,选C.
本题主要考查菱形的性质,关键在于证明三角形全等,是一道综合形比较强的题目.
5、A
【解析】
根据平面直角坐标系中,关于原点对称的点的坐标特征,即可得到答案.
【详解】
点关于原点对称的点的坐标为(-4,3),
故选A.
本题主要考查平面直角坐标系中,关于原点对称的点的坐标特征,熟练掌握“关于原点对称的两点的横纵坐标分别互为相反数”,是解题的关键.
6、D
【解析】
先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.
【详解】
∵ab>0,a+b<0,
∴a<0,b<0,
∴无意义,故①不正确;
,故②正确
,故③正确.
故选D.
本题考查了二次根式的性质,熟练掌握性质是解答本题的关键. ,, (a≥0,b>0).
7、C
【解析】
如果设这两年手机支付用户的年平均增长率为,那么2016年手机支付用户约为亿人,2017年手机支付用户约为亿人,而2017年手机支付用户达到约亿人,根据2017年手机支付用户的人数不变,列出方程.
【详解】
设这两年手机支付用户的年平均增长率为,依题意得:
.
故选:.
本题考查的是由实际问题抽象出一元二次方程-平均增长率问题.解决这类问题所用的等量关系一般是:.
8、A
【解析】
证明△ABN≌△ADN,得到AD=AB=10,BN=DN,根据三角形中位线定理求出CD,计算即可.
【详解】
解:在△ABN和△ADN中,
∴△ABN≌△ADN,
∴AD=AB=10,BN=DN,
∵M是△ABC的边BC的中点,BN=DN,
∴CD=2MN=8,
∴△ABC的周长=AB+BC+CA=43,
故选A.
本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握 三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≥-1
【解析】
试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
考点:函数自变量的取值范围.
10、AB=CD(答案不唯一)
【解析】
由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.
【详解】
解:添加条件为:AB=CD(答案不唯一);理由如下:
∵AB∥DC,AB=CD,
∴四边形ABCD是平行四边形,
∴AD=BC.
故答案为AB=CD(答案不唯一).
本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.
11、0,1,2
【解析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得:,
合并同类项,得,
不等式两边同时除以-7,得,
所以符合条件的非负整数解是0,1,2.
本题考查了不等式的解法和非负整数解的知识,准确求解不等式是解决这类问题的关键.
12、( +x)( -x)
【解析】
理解实数范围内是要运算到无理数为止,即可解题.
【详解】
解:5-x2=( +x)( -x)
本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.
13、1
【解析】
本题根据一元二次方程的根的定义、一元二次方程的定义求解.
【详解】
∵x=3是方程的根,由一元二次方程的根的定义,可得32-3k-6=0,解此方程得到k=1.
本题逆用一元二次方程解的定义易得出k的值.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)证明见解析
【解析】
(1)由已知可得:EF是△ABC的中位线,则可得EF∥AB,EF=AB,又由DF=EF,易得AB=DE,根据有一组对边平行且相等的四边形是平行四边形,即可证得四边形ABED是平行四边形;
(2)由(1)可得四边形AECD是平行四边形,又由AB=AC,AB=DE,易得AC=DE,根据对角线相等的平行四边形是矩形,可得四边形AECD是矩形.
【详解】
解:(1)∵E、F分别为△ABC的边BC、CA的中点,
∴EF∥AB,EF=AB,
∵DF=EF,
∴EF=DE,
∴AB=DE,
∴四边形ABED是平行四边形;
(2)∵DF=EF,AF=CF,
∴四边形AECD是平行四边形,
∵AB=AC,AB=DE,
∴AC=DE,
∴四边形AECD是矩形.
或∵DF=EF,AF=CF,
∴四边形AECD是平行四边形,
∵AB=AC,BE=EC,
∴∠AEC=90°,
∴四边形AECD是矩形.
本题考查矩形的判定及平行四边形的判定,掌握判定方法正确推理论证是解题关键.
15、(1)点C,点D的坐标分别为:(1,﹣2),(4,2);(2)见解析.
【解析】
(1)直接利用关于原点对称点的性质进而得出答案;
(2)利用平行四边形的判定方法得出答案.
【详解】
(1)解:∵A(﹣1,2),B(﹣4,﹣2),点A,B关于原点的对称点C,D,
∴点C,点D的坐标分别为:(1,﹣2),(4,2);
(2)证明:
∵AD=BC=4+1=5,
∵A(﹣1,2),B(﹣4,﹣2),C(1,﹣2),D(4,2);
∴AD∥BC,
∴四边形ABCD是平行四边形.
此题主要考查了旋转变换以及平行四边形的判定,正确把握平行四边形的判定方法是解题关键.
16、(1)-3;-1;11;(2);(3).
【解析】
(1)根据根与系数的关系可求出x1+x2和x1x2的值,然后利用完全平方公式将变形为,再代值求解即可;
(2)利用加减法结合因式分解解方程组,然后求值即可;
(3)根据材料中的的解法将等式变形,然后将m和看作一个整体,利用一元二次方程根与系数的关系,可求出m+和m•的值,然后再代值求解.
【详解】
解:(1)∵为方程的两根,
∴,
故答案为:-3;-1;11;
(2)
①×b得:
②×a得:
③-④得:
或
∴或
又∵
∴,即
故答案为:;
(3)由n2+3n-2=0可知n≠0;
∴
∴
又2m2-3m-1=0,且mn≠1,即m≠;
∴m、是方程2x2-3x-1=0的两根,
∴m+=,m•=;
∴.
本题考查一元二次方程根与系数的关系,能够正确的理解材料的含义,并熟练地掌握根与系数的关系是解答此题的关键.
17、当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.
【解析】
分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.
【详解】
解:是的中点,
,
①当运动到和之间,设运动时间为,则得:
,
解得:;
②当运动到和之间,设运动时间为,则得:
,
解得:,
当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.
此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.
18、(1)见解析;(2).
【解析】
(1)根据题意可求OA=OB=DO,∠AOB=60°,可得∠BAD=90°,即结论可得;
(2)根据勾股定理可求AD的长,即可求▱ABCD的面积.
【详解】
解(1)∵△AOB为等边三角形∴∠BAO=60°=∠AOB,OA=OB
∵四边形ABCD是平行四边形
∴OB=OD,
∴OA=OD
∴∠OAD=30°,
∴∠BAD=30°+60°=90°
∴平行四边形ABCD为矩形;
(2)在Rt△ABC中,∠ACB=30°,
∴AB=4,BC=AB=4
∴▱ABCD的面积=4×4=16
本题考查了矩形的性质和判定,等边三角形的性质,灵活运用这些性质解决问题是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、xn+1-1
【解析】
观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.
20、1
【解析】
根据多边形的内角和定理:求解即可.
【详解】
解:由题意可得:,
解得.
故多边形是1边形.
故答案为:1.
主要考查了多边形的内角和定理.边形的内角和为:.此类题型直接根据内角和公式计算可得.
21、1
【解析】
根据直角三角形的性质30°所对的直角边等于斜边的一半求解即可.
【详解】
∵在Rt△ABC中,∠C=90°,∠A=30°,
∴=,
∵BC=6,
∴AB=1.
故答案为1.
本题主要考查含30度角的直角三角形的知识点,此题较简单,需要同学们熟记直角三角形的性质:30°所对的直角边等于斜边的一半.
22、
【解析】
,
故答案为
考点:分母有理化
23、乙
【解析】
试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.
考点:方差;折线统计图.
点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)
【解析】
(1)根据矩形的性质可得AD=BC,AB=DC,AD∥BC,∠BAD=90°,从而得出∠GDB=∠DBC,然后根据折叠的性质可得BC= BC′,∠GBD=∠DBC,从而得出AD= BC′,∠GBD=∠GDB,然后根据等角对等边可得GD=GB,即可证出结论;
(2)设GD=GB=x,利用勾股定理列出方程即可求出GD的长,然后根据三角形的面积公式求面积即可.
【详解】
(1)证明:∵四边形ABCD为矩形
∴AD=BC,AB=DC,AD∥BC,∠BAD=90°
∴∠GDB=∠DBC
由折叠的性质可得BC= BC′,∠GBD=∠DBC
∴AD= BC′,∠GBD=∠GDB
∴GD=GB
∴AD-GD= BC′-GB
∴AG=C′G;
(2)解:设GD=GB=x,则AG=AD-GD=8-x
在Rt△ABG中
即
解得:
即
∴S△BDG=
此题考查的是矩形的性质、折叠的性质、等腰三角形的判定、勾股定理和求三角形的面积,掌握矩形的性质、折叠的性质、等角对等边、利用勾股定理解直角三角形是解决此题的关键.
25、(1)见解析;(2)见解析
【解析】
(1)根据平行四边形的性质即可得到结论;
(2)根据平行四边形的面积公式计算即可得到结论.
【详解】
解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;
(2)菱形DBFG面积=
=
=12
或平行四边形面积=
=15
本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
26、(1)y=-0.5x+1,y=;(1)-1
【解析】
(1)先把C点坐标代入反比例函数求出m,再根据D坐标的横坐标为-1求出D点坐标,再把C,D坐标代入一次函数求出k,b的值;
(1)根据C,D两点的横坐标,结合图像即可求解.
【详解】
(1)把C(4,-1)代入反比例函数,得m=4×(-1)=-4,
∴y=;
设D(-1,y),代入y=得y=-1,
∴D(-1,1)
把C(4,-1), D(-1,1)代入一次函数
得
解得k=-0.5,b=1
∴y=-0.5x+1
(1)∵C,D两点的横坐标分别为4,-1,
由图像可知当-1
此题主要考查反比例函数与一次函数,解题的关键是熟知待定系数法确定函数关系式.
题号
一
二
三
四
五
总分
得分
批阅人
内蒙古根河市阿龙山中学2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】: 这是一份内蒙古根河市阿龙山中学2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
内蒙古赤峰市翁牛特旗2024年数学九年级第一学期开学调研模拟试题【含答案】: 这是一份内蒙古赤峰市翁牛特旗2024年数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届内蒙古兴安盟地区两旗一县数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2025届内蒙古兴安盟地区两旗一县数学九年级第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。