内蒙古锡林郭勒盟正镶白旗察汗淖中学2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列计算正确的是
A.B.C.D.
2、(4分)下列交通标志中、既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
3、(4分)下列式子一定是二次根式的是( )
A.B.C.D.
4、(4分)某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有( )
A.152块B.153块C.154块D.155块
5、(4分)在平行四边形中,,则的度数为( )
A.110°B.100°C.70°D.20°
6、(4分)在一次函数y=kx+1中,若y随x的增大而增大,则它的图象不经过第( )象限
A.四 B.三 C.二 D.一
7、(4分) “凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )
A.x(x+1)=210B.x(x﹣1)=210
C.2x(x﹣1)=210D.x(x﹣1)=210
8、(4分)在平面直角坐标系中,函数y=(k﹣1)x+(k+2)(k﹣2)的图象不经过第二象限与第四象限,则常数k满足( )
A.k=2B.k=﹣2C.k=1D.k>1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)把二次函数y= -2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是 _____________;
10、(4分)_______
11、(4分)若的整数部分是a,小数部分是b,则______.
12、(4分)计算:的结果是__________.
13、(4分)弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:
当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,,,,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.
(1)求AD的长;
(2)求AE的长.
15、(8分)计算:
解方程:.
16、(8分)如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.
(1)求证:△ABF≌△DEF;
(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.
17、(10分)已知函数.
(1)若这个函数的图象经过原点,求的值
(2)若这个函数的图象不经过第二象限,求的取值范围.
18、(10分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.
(1)根据函数的定义,请判断变量h是否为关于t的函数?
(2)结合图象回答:
①当t=0.7s时,h的值是多少?并说明它的实际意义.
②秋千摆动第一个来回需多少时间?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是______.
20、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
21、(4分)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是_____.
22、(4分)某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)
23、(4分)已知直线与反比例函数的图象交于A、B两点,当线段AB的长最小时,以AB为斜边作等腰直角三角形△ABC,则点C的坐标是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)△ABC在平面直角坐标系xOy中的位置如图所示.
(1)作△ABC关于点C成中心对称的△A1B1C1.
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
25、(10分)在所给的网格中,每个小正方形的网格边长都为1,按要求画出四边形,使它的四个顶点都在小正方形的顶点上.
(1)在网格1中画出面积为20的菱形(非正方形);
(2)在网格2中画出以线段为对角线、面积是24的矩形;直接写出矩形的周长 .
26、(12分)计算:
(1) (2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
A. ,故正确;
B. ,故不正确;
C. ,故不正确;
D. ,故不正确;
故选A.
2、A
【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】
A、既是轴对称图形又是中心对称图形,故本选项正确;
B、不是轴对称图形,也不是中心对称图形,故本选项错误;
C、不是轴对称图形,也不是中心对称图形,故本选项错误;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选:A.
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键. 在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
3、C
【解析】
根据二次根式的定义:形如(a≥0)的式子叫做二次根式,逐一判断即可.
【详解】
解:A.当x=0时, 不是二次根式,故本选项不符合题意;
B. 当x=-1时,不是二次根式,故本选项不符合题意;
C. 无论x取何值,,一定是二次根式,故本选项符合题意;
D. 当x=0时,不是二次根式,故本选项不符合题意.
故选C.
此题考查的是二次根式的判断,掌握二次根式的定义是解决此题的关键.
4、C
【解析】
根据题意设出未知数,列出相应的不等式,从而可以解答本题.
【详解】
解:设这批手表有x块,
解得,
这批手表至少有154块,
故选C.
本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.
5、A
【解析】
根据平行四边形邻角互补进行求解即可.
【详解】
因为四边形ABCD是平行四边形,
所以∠B=180°-∠A=110°,
故选A.
本题考查了平行四边形的性质,注意掌握平行四边形的邻角互补,对角相等.
6、A
【解析】
利用一次函数的性质得到k>0,则可判断直线y=kx+1经过第一、三象限,然后利用直线y=kx+1与y轴的交点为(0,1)可判断直线y=kx+1不经过第四象限.
【详解】
∵y=kx+1,y随x的增大而增大,
∴k>0,
∴直线y=kx+1经过第一、三象限,
而直线y=kx+1与y轴的交点为(0,1),
∴直线y=kx+1经过第一、二、三象限,不经过第四象限.
故选:A.
本题考查了一次函数的性质:对于一次函数y=kx+b,当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
7、B
【解析】
设全组共有x名同学,那么每名同学送出的图书是(x−1)本;
则总共送出的图书为x(x−1);
又知实际互赠了210本图书,
则x(x−1)=210.
故选:B.
8、A
【解析】
根据一次函数的性质求解.
【详解】
∵一次函数y=(k-1)x+(k+2)(k-2)的图象不经过第二象限与第四象限,
则k-1>0,且(k+2)(k-2)=0,解得k=2,
故选A.
本题考查一次函数的图象与系数的关系,关键是根据一次函数的性质解答.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y= -2x2+12x-2
【解析】
先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.
【详解】
解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.
按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得
y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.
故答案为:y=-2x2+12x-2.
本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.
10、2019
【解析】
直接利用平方差公式即可解答
【详解】
=2019
此题考查平方差公式,解题关键在于掌握运算法则
11、1.
【解析】
若的整数部分为a,小数部分为b,
∴a=1,b=,
∴a-b==1.
故答案为1.
12、;
【解析】
根据二次根式的运算即可求解.
【详解】
=
此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质进行化简.
13、1
【解析】
根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.
【详解】
解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
将(0.5,16)、(1.0,17)代入,得: ,
解得: ,
∴L与x之间的函数关系式为:L=2x+15;
当x=4时,L=2×4+15=1(cm)
故重物为4kg时弹簧总长L是1cm,
故答案为1.
吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.
三、解答题(本大题共5个小题,共48分)
14、 (1)5;(2)
【解析】
(1)直接利用勾股定理得出AB的长,即可解决问题.
(2)用未知数表示出EC,BE的长,再利用勾股定理得出EC的长,进而得出答案.
【详解】
(1)如图所示:
∵在中,,,,
∴,
∵DE垂直平分AB,
∴.
(2)∵DE垂直平分AB,
∴,
设,则,
故,
解得:,
∴.
此题主要考查了勾股定理以及线段垂直平分线的性质,正确得出EC的长是解题关键.
15、(1);(2),.
【解析】
直接利用零指数幂的性质以及二次根式的性质分别化简得出答案;
直接利用十字相乘法分解因式进而解方程得出答案.
【详解】
解:原式
;
,
解得:,.
此题主要考查了因式分解法解方程以及实数运算,正确掌握解题方法是解题关键.
16、(1)证明见解析;(2)4
【解析】
(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABF=∠E,根据全等三角形的判定定理即可得到结论;
(2)根据平行四边形的性质和角平分线的定义可求出AB=AF,再根据等腰三角形的性质可求出BG的长,进而可求出BF的长,根据全等三角形的性质得到BF=EF,所以BE=2BF,问题得解.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABF=∠E,
∵点F恰好为边AD的中点,
∴AF=DF,
在△ABF与△DEF中,
,
∴△ABF≌△DEF;
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=4,
∵∠AFB=∠FBC,
∵∠ABC的平分线与CD的延长线相交于点E,
∴∠ABF=∠FBC,
∴∠AFB=∠ABF,
∴AB=AF,
∵点F为AD边的中点,AG⊥BE.
∴BG=,
∴BE=2,
∵△ABF≌△EDF,
∴BE=2BF=4.
本题考查了平行四边形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定和性质、勾股定理的运用,题目的综合性较强,难度中等.
17、(1)的值为3;(2)的取值范围为:.
【解析】
(1)将原点坐标(0,0)代入解析式即可得到m的值;
(2)分两种情况讨论:当2m+1=0,即m=-,函数解析式为:y=-,图象不经过第二象限;当2m+1>0,即m>-,并且m-3≤0,即m≤3;综合两种情况即可得到m的取值范围.
【详解】
(1)将原点坐标(0,0)代入解析式,得m−3=0,即m=3,
所求的m的值为3;
(2)当2m+1=0,即m=−,函数解析式为:y=−,图象不经过第二象限;
②当2m+1>0,即m>−,并且m−3⩽0,即m⩽3,所以有−
此题考查一次函数的性质,一次函数图象上点的坐标特征,解题关键在于原点坐标(0,0)代入解析式.
18、(1)变量h是关于t的函数;(2)2.8s
【解析】
【分析】根据函数的定义进行判断即可.
①当时,根据函数的图象即可回答问题.
②根据图象即可回答.
【解答】(1)∵对于每一个摆动时间,都有一个唯一的的值与其对应,
∴变量是关于的函数.
(2)①,它的实际意义是秋千摆动时,离地面的高度为.
②.
【点评】本题型旨在考查学生从图象中获取信息、用函数的思想认识、分析和解决问题的能力.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CHAF.在Rt△AMF中,根据勾股定理求出AF即可.
【详解】
∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M.连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°.
∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°.
∵H为AF的中点,∴CHAF.在Rt△AMF中,由勾股定理得:AF,∴CH.
故答案为.
本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解答此题的关键是能正确作出辅助线,并求出AF的长和得出CHAF,有一定的难度.
20、x<﹣2
【解析】
根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.
【详解】
解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),
∴一次函数图象经过第二、三、四象限,
∴当x<-2时,y>1,即ax+b>1,
∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
21、(2,-1).
【解析】
试题分析:如图,根据A(-2,1)和B(-2,-3)确定平面直角坐标系,然后根据点C在坐标系中的位置确定点C的坐标为(2,-1).
考点:根据点的坐标确定平面直角坐标系.
22、(1-x)2
【解析】
根据题意即可列出代数式.
【详解】
∵某种手机每部售价为元,如果每月售价的平均降低率为,
则一个月后的售价为(1-x)
故两个月后的售价为(1-x)2
此题主要考查列代数式,解题的关键是根据题意找到数量关系.
23、或
【解析】
联立方程组,求出A、B的坐标,分别用k表示,然后根据等腰直角三角形的两直角边相等求出k的值,即可求出结果.
【详解】
由题可得,
可得,
根据△ABC是等腰直角三角形可得:
,
解得,
当k=1时,点C的坐标为,
当k=-1时,点C的坐标为,
故答案为或.
本题主要考查了一次函数与反比例函数的综合应用,利用好等腰直角三角形的条件很重要.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)见解析(3)(,0)
【解析】
解;作图如图所示,可得P点坐标为:(,0)。
(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象。
(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2。
(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可。
25、(1)见解析;(2)
【解析】
(1)根据边长为5,高为4的菱形面积为20作图即可;
(2)边长为和的矩形对角线AC长为,面积为24,据此作图即可.
【详解】
解:(1)如图1所示,菱形即为所求;
(2)如图2所示,矩形即为所求.
∵,
∴矩形的周长为.
故答案为:.
本题考查的知识点是菱形的性质以及作图,根据题意计算得出菱形的边长和矩形的边长是解此题的关键.
26、 (1); (2).
【解析】
(1)先进行二次根式的乘法运算,然后再化简二次根式,最后合并同类二次根式即可得解;
(2)利用完全平方公式进行计算即可得解.
【详解】
(1)
=
=
=;
(2)
=40-60+45
=.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
题号
一
二
三
四
五
总分
得分
批阅人
弹簧总长L(cm)
16
17
18
19
20
重物质量x(kg)
0.5
1.0
1.5
2.0
2.5
2025届内蒙古正镶白旗察汗淖中学九年级数学第一学期开学检测模拟试题【含答案】: 这是一份2025届内蒙古正镶白旗察汗淖中学九年级数学第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
内蒙古锡林郭勒盟正镶白旗察汗淖中学2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案: 这是一份内蒙古锡林郭勒盟正镶白旗察汗淖中学2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列四对图形中,是相似图形的是,下列各组中的四条线段成比例的是等内容,欢迎下载使用。
内蒙古正镶白旗察汗淖中学2023-2024学年九上数学期末综合测试试题含答案: 这是一份内蒙古正镶白旗察汗淖中学2023-2024学年九上数学期末综合测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,斜面AC的坡度等内容,欢迎下载使用。