![内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16287782/0-1729809802203/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16287782/0-1729809802231/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16287782/0-1729809802251/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】
展开
这是一份内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是( )
A.矩形 B.菱形 C.矩形或菱形 D.正方形
2、(4分)已知四边形ABCD的对角线AC、BD相交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是( )
A.,
B.,
C.,
D.,
3、(4分)下列各式:,,,,,,其中分式有( )
A.2个 B.3个 C.4个 D.5个
4、(4分)学校测量了全校800名男生的身高,并进行了分组,已知身高在1.70~1.75(单位:m)这一组的频率为0.25,则该组共有男生( )
A.100名B.200名C.250名D.400名
5、(4分)某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )
A.甲B.乙丙C.甲乙D.甲丙
6、(4分)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )
A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
7、(4分)下图是外周边缘为正八边形的木花窗挂件,则这个八边形的每个内角为( )
A.B.C.D.
8、(4分)如图,在中,,,平分交于点,于点,下列结论:①;②;③;④点在线段的垂直平分线上,其中正确的个数有( )
A.4个B.3个C.2个D.1个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对下列现象中蕴含的数学原理阐述正确的是_____(填序号)
①如图(1),剪两张对边平行的纸条,随意交叉叠放在一起,重合的部分构成一个平行四边形.其依据是两组对边分别平行的四边形是平行四边形.
②如图(2),工人师傅在做矩形门窗时,不仅测量出两组对边的长度是否相等,还要测量出两条条对角线的长度相等,以确保图形是矩形.其依据是对角线相等的四边形是矩形.
③如图(3),将两张等宽的纸条放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是一组邻边相等的平行四边形是菱形.
④如图(4),把一张长方形纸片按如图方式折一下,就可以裁出正方形.其依据是一组邻边相等的矩形是正方形.
10、(4分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于___________(填普查或抽样调查)
11、(4分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”,若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程x2+3x+m=0的解为_____.
12、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点.连结、.下列结论:①;②;③是正三角形;④的面积为1.其中正确的是______(填所有正确答案的序号).
13、(4分)某校对初一全体学生进行一次视力普查,得到如下统计表,视力在这个范围的频率为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,E点为AC的中点,且有,,,求DE的长.
15、(8分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
(1)求证:△BCE≌△DCF.
(2)判断OG与BF有什么关系,证明你的结论.
(3)若DF2=8-4,求正方形ABCD的面积?
16、(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付.
(1)张华用“微信”支付的概率是______.
(2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”、“银行卡”、“现金”分别用字母“A”“B”“C”“D”代替)
17、(10分)(1)解方程:.
(2)先化简,再求值:,其中.
18、(10分)如图,在平面直角坐标系中,矩形的顶点、在坐标轴上,点的坐标为点从点出发,在折线段上以每秒3个单位长度向终点匀速运动,点从点出发,在折线段上以每秒4个单位长度向终点匀速运动.两点同时出发,当其中一个点到达终点时,另一个点也停止运动,连接.设两点的运动时间为,线段的长度的平方为,即(单位长度2).
(1)当点运动到点时,__________,当点运动到点时,__________;
(2)求关于的函数解析式,并直接写出自变量的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若,则xy的值等于_______.
20、(4分)如图,正方形的边长是,的平分线交于点,若点分别是和上的动点,则的最小值是_______.
21、(4分)已知直角三角形的周长为14,斜边上的中线长为3. 则直角三角形的面积为________.
22、(4分)已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.
23、(4分)小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形是一个特殊的四边形.请判断这个特殊的四边形应该叫做什么,并证明你的结论.
25、(10分)如图,直线y=x+b分别交x轴、y轴于点A、C,点P是直线AC与双曲线y=在第一象限内的交点,PB⊥x轴,垂足为点B,且OB=2,PB=1.
(1)求反比例函数的解析式;
(2)求△APB的面积;
(3)求在第一象限内,当x取何值时一次函数的值小于反比例函数的值?
26、(12分)已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.
(1)求证:四边形ABCD是矩形;
(2)若AB=4,AD=3,求四边形BCED的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据正方形、平行四边形、菱形和矩形的定义或性质逐个进行分析,即可得出答案.
【详解】
解:正方形是特殊的矩形,即是邻边相等的矩形,
也是特殊的菱形,即有是一个角为直角的菱形;
正方形、矩形和菱形都是特殊的平行四边形,
故图中阴影部分表示的图形是正方形.
故选:D.
本题考查学生对正方形、平行四边形、菱形和矩形的包含关系的理解和掌握,解题的关键是熟练掌握这四种图形的性质.
2、C
【解析】
根据平行四边形的判定定理分别进行分析即可.
【详解】
A、∵∠ADB=∠CBD,
∴AD∥BC,
∵AB∥CD,
∴四边形ABCD是平行四边形,故此选项不合题意;
B、∵∠ADB=∠CBD,
∴AD∥BC,
∵∠DAB=∠BCD,
∴∠BAD+∠ABC=∠ADC+∠BCD=180°,
∴∠ABC=∠ADC,
∴四边形ABCD是平行四边形,故此选项不符合题意;
C、∠DAB=∠BCD,AB=CD不能判定四边形ABCD是平行四边形,故此选项符合题意;
D、∵∠ABD=∠CDB,∠AOB=∠COD,OA=OC,
∴△AOB≌△COD(AAS),
∴OB=OC,
∴四边形ABCD为平行四边形,故此选项不合题意;
故选:C.
此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.
3、B.
【解析】
试题分析:由分式的定义知:,,是分式,故选B.
考点:分式的定义.
4、B
【解析】
根据频数=总数×频率,直接代值计算即可.
【详解】
解:根据题意,得
该组共有男生为:800×0.25=200(人).
故选:B.
此题考查频率、频数的关系:频率=。能够灵活运用公式是解题的关键.
5、C
【解析】
利用平均数的定义分别进行计算成绩,然后判断谁优秀.
【详解】
解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,
乙的总评成绩=98×50%+90×20%+95×30%=95.5,
丙的总评成绩=80×50%+88×20%+90×30%=84.6,
∴甲乙的学期总评成绩是优秀.
故选:C.
本题考查加权平均数,掌握加权成绩等于各项成绩乘以不同的权重的和是解题的关键.
6、D
【解析】
根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.
【详解】
根据图中信息,某种结果出现的频率约为0.16,
在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,
从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,
掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,
掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,
故选D.
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
7、D
【解析】
根据多边形的内角和公式,列式计算即可得解.
【详解】
解:这个正八边形每个内角的度数=×(8-2)×180°=135°.
故选:D
本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.
8、A
【解析】
首先求出∠C=30°,∠ABC=60°,再根据角平分线的定义,直角三角形30°角的性质,线段的垂直平分线的定义一一判断即可.
【详解】
∵在△ABC中,∠BAC=90°,∠ABC=2∠C,
∴∠C=30°,∠ABC=60°,
∵BE平分∠ABC,
∴∠ABE=∠EBC=30°,
∴∠EBC=∠C,
∴EB=EC,
∴AC-BE=AC-EC=AE,故①正确,
∵EB=EC,
∴点E在线段BC的垂直平分线上,故④正确,
∵AD⊥BE,
∴∠BAD=60°,
∵∠BAE=90°,
∴∠EAD=30°,
∴∠EAD=∠C,故②正确,
∵∠ABD=30°,∠ADB=90°,
∴AB=2AD,
∵∠BAC=90°,∠C=30°,
∴BC=2AB=4AD,故③正确,
故选A.
本题考查角平分线的性质,线段的垂直平分线的定义,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①③④
【解析】
①平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;
②矩形的判定定理:对角线相等的平行四边形是矩形;
③首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则重叠部分为菱形;
④根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.
【详解】
解:①由题意得:AB∥CD,AD∥BC,
∵两组对边分别平行,
∴四边形ABCD是平行四边形,故正确;
②∵两组对边的长度相等,
∴四边形是平行四边形,
∵对角线相等,
∴此平行四边形是矩形,故错误;
③∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
∴AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);
过点D分别作AB,BC边上的高为DE,DF.如图所示:
则DE=DF(两纸条相同,纸条宽度相同);
∵平行四边形ABCD的面积=AB×DE=BC×DF,
∴AB=BC.
∴平行四边形ABCD为菱形(一组邻边相等的平行四边形是菱形),故正确;
④根据折叠原理,对折后可得:
所得的四边形有三个直角,且一组邻边相等,
所以可以裁出正方形纸片,故正确.
故答案为①③④.
本题考查了平行四边形的判定、矩形的判定、菱形的判定以及正方形的判定,熟练掌握判定定理是解题的关键.
10、抽样调查
【解析】
根据普查和抽样调查的定义,显然此题属于抽样调查.
【详解】
由于只是取了一点品尝,所以应该是抽样调查.
故答案为:抽样调查.
此题考查抽样调查和全面调查,解题关键在于掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.
11、x1=﹣1,x1=﹣1.
【解析】
利用题中的新定义求出m的值,代入一元二次方程,运用因式分解法解方程,即可求出解.
【详解】
解:由“关联数”定义得一次函数为y=x+m﹣1,
又∵此一次函数为正比例函数,∴m﹣1=0,
解得:m=1,
∴关于x的方程为x1+3x+1=0,
因式分解得:(x+1)(x+1)=0,
∴x+1=0或x+1=0,
∴x1=﹣1,x1=﹣1;
故答案为x1=﹣1,x1=﹣1.
本题考查新定义“关联数”、一元二次方程的解法以及一次函数的定义,弄清题中的新定义是解本题的关键.
12、①②④
【解析】
①根据折叠的性质可以得到∠B=∠AFG=1°,AB=AF,AG=AG,根据HL定理即可证明两三角形全等;
②不妨设BG=FG=x,(x>0),则CG=30-x,EG=10+x,在Rt△CEG中,利用勾股定理即可列方程求得;
③利用②得出的结果,结合折叠的性质求得答案即可;
④根据三角形的面积公式可得:S△FGC=S△EGC,即可求解.
【详解】
解:如图:
在正方形ABCD中,AD=AB,∠D=∠B=∠C=1°,
又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G
∴∠AFG=∠AFE=∠D=1°,AF=AD,
即有∠B=∠AFG=1°,AB=AF,AG=AG,
在直角△ABG和直角△AFG中,
AB=AF,AG=AG,
∴△ABG≌△AFG;正确.
∵AB=30,点E在边CD上,且CD=3DE,
∴DE=FE=10,CE=20,
不妨设BG=FG=x,(x>0),
则CG=30-x,EG=10+x,
在Rt△CEG中,(10+x)2=202+(30-x)2
解得x=15,于是BG=GC=15;正确.
∵BG=GF=CG,
∴△CFG是等腰三角形,
∵BG=AB,
∴∠AGB≠60°,
则∠FGC≠60°,
∴△CFG不是正三角形.错误.
∵,
∴,
∴S△FGC=S△EGC=××20×15=1.正确.
正确的结论有①②④.
故答案为:①②④.
本题考查了正方形的性质,以及图形的折叠的性质,三角形全等的证明,理解折叠的性质是关键.
13、0.1
【解析】
【分析】先求出视力在4.9≤x
相关试卷
这是一份2025届内蒙古伊金霍洛旗数学九上开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年内蒙古扎兰屯市民族中学九年级数学第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,四象限D.当x=时,y=1,解答题等内容,欢迎下载使用。
这是一份2024年内蒙古乌海市第四中学数学九年级第一学期开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)