内蒙古自治区包头市青山区2025届九上数学开学质量检测模拟试题【含答案】
展开
这是一份内蒙古自治区包头市青山区2025届九上数学开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若点P的坐标为(3,4 ),则点P关于x轴对称点的点P′的坐标为( )
A.(4,-3 )B.(3,-4 )C.(-4,3 )D.(-3,4)
2、(4分)下列等式从左边到右边的变形,是因式分解的是( )
A.(3﹣a)(3+a)=9﹣a2B.x2﹣y2+1=(x+y)(x﹣y)+1
C.a2+1=a(a+)D.m2﹣2mn+n2=(m﹣n)2
3、(4分)一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )
①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
A.2个B.3个C.4个D.5个
4、(4分)下列函数中,是的正比例函数的是( )
A.B.C.D.
5、(4分)函数中,自变量x的取值范围是( )
A.B.C.D.x为任意实数
6、(4分)甲、乙、丙三位选手各10次射击成绩的平均数和方差统计如表:
已知乙是成绩最稳定的选手,且乙的10次射击成绩不都一样,则a的值可能是( )
A.0B.0.020C.0.030D.0.035
7、(4分)(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,
得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( )
A.甲比乙的产量稳定B.乙比甲的产量稳定
C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定
8、(4分)一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为( )
A.小时B.小时C. 小时D.小时
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是_____.
10、(4分)若+( x-y+3)2=0,则(x+y)2018=__________.
11、(4分)对分式和进行通分,它们的最简公分母是________.
12、(4分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如,3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12…,因此3,5,7,8…都是“智慧数”在正整数中,从1开始,第2018个智慧数是_____.
13、(4分)如图,中,,以为斜边作,使分别是的中点,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.
(1)求证:∠FBC=∠CDF;
(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.
15、(8分)如图,矩形花坛面积是24平方米,两条邻边,的和是10米(),求边的长.
16、(8分)已知关于x的一元二次方程x1﹣3x+k=0方程有两实根x1和x1.
(1)求实数k的取值范围;
(1)当x1和x1是一个矩形两邻边的长且矩形的对角线长为,求k的值.
17、(10分)如图,已知矩形ABCD,用直尺和圆规进行如下操作:
①以点A为圆心,以AD的长为半径画弧交BC于点E;
②连接AE,DE;
③作DF⊥AE于点F.
根据操作解答下列问题:
(1)线段DF与AB的数量关系是 .
(2)若∠ADF=60°,求∠CDE的度数.
18、(10分)已知一次函数,.
(1)若方程的解是正数,求的取值范围;
(2)若以、为坐标的点在已知的两个一次函数图象上,求的值;
(3)若,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “两直线平行,内错角相等”的逆命题是__________.
20、(4分)如果关于的不等式组的整数解仅有,,那么适合这个不等式组的整数,组成的有序数对共有_______个;如果关于的不等式组(其中,为正整数)的整数解仅有,那么适合这个不等式组的整数,组成的有序数对共有______个.(请用含、的代数式表示)
21、(4分)如图,在反比例函数的图像上有点它们的横坐标依次为1,2,3,……,n,n+1,分别过点作x轴,y轴的垂线,图中所构成的阴影部分面积从左到右依次为,则Sn=__________。(用含n的代数式表示)
22、(4分)如图,边长为5的菱形ABCD中,对角线AC长为6,菱形的面积为______.
23、(4分)如图1,在菱形中,,点在的延长线上,在的角平分线上取一点(含端点),连结并过点作所在直线的垂线,垂足为.设线段的长为,的长为,关于的函数图象及有关数据如图2所示,点为图象的端点,则时,_____,_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解下列一元二次方程
(1) (2)
25、(10分)对于某一函数给出如下定义:若存在实数,当其自变量的值为时,其函数值等于,则称为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度为零.例如,图1中的函数有0,1两个不变值,其不变长度等于1.
(1)分别判断函数,有没有不变值?如果有,请写出其不变长度;
(2)函数且,求其不变长度的取值范围;
(3)记函数的图像为,将沿翻折后得到的函数图像记为,函数的图像由和两部分组成,若其不变长度满足,求的取值范围.
26、(12分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图像如图所示。
(1)请根据图像回答下列问题:甲先出发 小时后,乙才出发;在甲出发 小时后两人相遇,这时他们距A地 千米;
(2)乙的行驶速度 千米/小时;
(3)分别求出甲、乙在行驶过程中的路程(千米)与时间(小时)之间的函数关系式(不要求写出自变量的取值范围)。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.
【详解】
∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
∴P′的坐标为(3,−4).
故选:B.
本题考查关于x轴对称的点的坐标的特点,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.
2、D
【解析】
利用把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出答案.
【详解】
A、(3﹣a)(3+a)=9﹣a2,是整式的乘法运算,故此选项错误;
B、x2﹣y2+1=(x+y)(x﹣y)+1,不符合因式分解的定义,故此选项错误;
C、a2+1=a(a+),不符合因式分解的定义,故此选项错误;
D、m2﹣2mn+n2=(m﹣n)2,正确.
故选:D.
此题主要考查了因式分解的意义,正确把握定义是解题关键.
3、B
【解析】
根据图形给出的信息求出两车的出发时间,速度等即可解答.
【详解】
解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
②慢车0时出发,快车2时出发,故正确.
③快车4个小时走了276km,可求出速度为69km/h,错误.
④慢车6个小时走了276km,可求出速度为46km/h,正确.
⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.
⑥快车2时出发,14时到达,用了12小时,错误.
故答案选B.
本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
4、A
【解析】
根据正比例函数的定义逐一判断即可.
【详解】
A. 是正比例函数,故A符合题意;
B. 不是正比例函数,故B不符合题意;
C. 不是正比例函数,故C不符合题意;
D. 不是正比例函数,故D不符合题意.
故选A.
此题考查的是正比例函数,掌握正比例函数的定义是解决此题的关键.
5、B
【解析】
根据二次根式的性质:被开方数大于等于0可以确定x的取值范围.
【详解】
函数中,
解得,
故选:B.
此题考查函数自变量的取值范围,正确列式是解题的关键.
6、B
【解析】
解:∵乙的11次射击成绩不都一样,∴a≠1.∵乙是成绩最稳定的选手,∴乙的方差最小,∴a的值可能是1.121.故选B.
7、A
【解析】
【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.
【详解】因为s=0.0020,
x===-1±,
所以.
本题考查了解一元二次方程,根据一元二次方程的特点选择适当的方法进行求解是解题的关键.
25、(1)不存在不变值;存在不变值,q=3;(2)0≤q≤2;(3)≤m≤4 或m<-0.2.
【解析】
(1)由题意得:y=x-3=x,无解,故不存在不变值;y=x2-2=x,解得:x=2或-1,即可求解;
(2)由题意得:y=x2-bx+1=x,解得:x= ,即可求解;
(3)由题意得:函数G的不变点为:2m-1+ 、2m-1- 、0、4;分x=m为G1的左侧、x=m为G1的右侧,两种情况分别求解即可.
【详解】
解:(1)由题意得:y=x-3=x,无解,故不存在不变值;
y=x2-2=x,解得:x=2或-1,故存在不变值,q=2-(-1)=3;
(2)由题意得:y=x2-bx+1=x,
解得:x=,
q=,1≤b≤3,
解得:0≤q≤2;
(3)由题意得:y=x2-3x沿x=m对翻折后,
新抛物线的顶点为(2m-,-),
则新函数G2的表达式为:y=x2-(4m-3)x+(4m2-6m),
当y=x时,整理得:x2-(4m-2)x+(4m2-6m)=0,
x=2m-1±,
即G2的不变点是2m-1+和2m-1-;
G1的不变点是:0和4;
故函数G的不变点为:2m-1+、2m-1-、0、4,
这4个不变点最大值的可能是2m-1+、4,最小值可能2m-1-、0,
----当x=m为G1对称轴x=的左侧时,
①当最大值为2m-1+时,
当最小值为2m-1-时,
即:0≤2m-1+-(2m-1-)≤4,
解得:0≤m≤;
当最小值为0时,
同理可得:0≤m≤;
②当最大值为4时,
最小值为2m-1-即可(最小值为0,符合条件),
即0≤4-(2m-1-)≤4,
解得:m=;
综上:0≤m≤;
----当x=m为G1对称轴x=的右侧时,
同理可得:≤m≤;
故:≤m≤4 或m<-0.2.
本题考查的是二次函数综合运用,涉及到方程和不等式的求解,其中(3),不等式求解难度非常大,并要注意分类求解,避免遗漏.
26、(1)3,4,40 (2)40 (3)y=40x-120
【解析】
(1)观察函数图象,即可得出结论;
(2)根据速度=路程时间,即可算出乙的行驶速度;
(3)根据速度=路程时间,求出甲的行驶速度,再结合甲的图象过原点O即可写出甲的函数表达式;设出乙的函数表达式为y=kx+b(k≠0),结合点的坐标利用待定系数法即可求出乙的函数表达式.
【详解】
解:(1)观察函数图象,发现: 甲先出发3小时后,乙才出发;在甲出发4小时后,两人相遇,这时他们离A地40千米. 故答案为:3;4;40.
(2)乙行驶的速度为:80÷(5-2)=40(千米/小时),故答案为:40.
(3)甲的速度为:80÷8=10(千米/小时),
∵甲的函数图象过原点(0,0),
甲的函数表达式:y=10x;
设乙的函数表达式为y=kx+b(k≠0)
点(3,0)和(5,80)在乙的图象上,
有0=3k+b 80=5k+b解得k=40 b=-120,
故乙的函数表达式:y=40x-120.
本题考查一次函数的应用,涉及利用待定系数法求一次函数、一次函数图像的性质知识点,学生们需要认真的分析.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
平均数
9.3
9.3
9.3
方差
0.026
a
0.032
相关试卷
这是一份湖北省武汉市青山区5月2025届数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份包头市和平中学2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届重庆实验学校数学九上开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。