内蒙古自治区鄂尔多斯市东胜区第二中学2024年九上数学开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列给出的四个点中,在直线的是( )
A.B.C.D.
2、(4分)某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)
35 38 42 44 40 47 45 45
则这组数据的中位数、平均数分别是( )
A.42、42B.43、42C.43、43D.44、43
3、(4分)如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=
A.40°B.50°
C.60°D.75°
4、(4分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E,则以下AE与CE的数量关系正确的是( )
A.AE=CEB.AE=CEC.AE=CED.AE=2CE
5、(4分)如图,是反比例函数y1=和y2=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲于A、B两点,若S△AOB=3,则k2﹣k1的值是( )
A.8B.6C.4D.2
6、(4分)点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )
A.关于x轴对称B.关于y轴对称
C.绕原点逆时针旋转D.绕原点顺时针旋转
7、(4分)关于反比例函数,下列说法中错误的是( )
A.它的图象分布在一、三象限
B.它的图象过点(-1,-3)
C.当x>0时,y的值随x的增大而增大
D.当x<0时,y的值随x的增大而减小
8、(4分)若关于的方程的解为正数,则的取值范围是( )
A.且B.且 C. 且 D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.
10、(4分)方程的解是____.
11、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.
12、(4分)如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.
13、(4分)直线y=3x-2与x轴的交点坐标为____________________
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,
(1)写出药物燃烧前后,y与x之间的函数表达式;
(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?
(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?
15、(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
16、(8分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副羽毛球拍送2个羽毛球.
设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:
(1)分别写出yA、yB与x之间的关系式;
(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?
(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
17、(10分)某文具商店的某种毛笔每支售价25元,书法练习本每本售价5元,该商店为促销正在进行优惠活动:
活动1:买一支毛笔送一本书法练习本;
活动2:按购买金额的九折付款.
某学校准备为书法兴趣小组购买这种毛笔20支,书法练习本x(x≥20)本.
(1)写出两种优惠活动实际付款金额y1(元),y2(元)与x(本)之间的函数关系式;
(2)请问:该校选择哪种优惠活动更合算?
18、(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.
(1)本次共抽查学生 人,并将条形图补充完整;
(2)捐款金额的众数是 平均数是 中位数为
(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数的图象经过第二、三、四象限,则的取值范围是__________.
20、(4分)在中,,,,则斜边上的高为________.
21、(4分)如果函数y=kx+b的图象与x轴交点的坐标是(3,0),那么一元一次方程kx+b=0的解是_____.
22、(4分)四边形ABCD中,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的边的条件是_________.
23、(4分)如图,在四边形ABCD中,对角线AC,BD交于点O,且OA=OC,OB=OD,要使四边形ABCD为矩形,则需要添加的条件是_______(只填一个即可).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,菱形ABCD的边长为2,,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为_____.
25、(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).
(1)这6名选手笔试成绩的中位数是________分,众数是________分;
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
26、(12分)甲、乙两车间同时开始加工—批服装.从开始加工到加工完这批服装甲车间工作了小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为(件).甲车间加工的时间为(时),与之间的函数图象如图所示.
(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件;
(2)求乙车间维修设备后,乙车间加工服装数量与之间的函数关系式;
(3)求甲、乙两车间共同加工完1140件服装时甲车间所用的时间.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
只需把每个点的横坐标即x的值分别代入,计算出对应的y值,然后与对应的纵坐标比较即可.
【详解】
解:A、当时,,则不在直线上;
B、当时,,则不在直线上;
C、当时,,则不在直线上;
D、当时,,则在直线上;
故选:D.
本题考查判断点是否在直线上,知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.
2、B
【解析】
分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.
详解:把这组数据排列顺序得:35 38 40 1 44 45 45 47,则这组数据的中位数为:=43,=(35+38+1+44+40+47+45+45)=1.
故选B.
点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.
3、B
【解析】
分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.
详解:∵∠B=∠D=90°
在Rt△ABC和Rt△ADC中
,
∴Rt△ABC≌Rt△ADC(HL)
∴∠2=∠ACB=90°-∠1=50°.
故选B.
点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
4、D
【解析】
首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.
【详解】
连接BE,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE,
故选D.
此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
5、B
【解析】
本题主要考察反比例函数系数的几何意义,反比例函数图像上点的坐标特征,三角形面积等知识点.
【详解】
设A(a,b),B(c,d),代入双曲线得到k1=ab, k2=cd.因为三角形AOB的面积为3.所以cd-ab=3.即cd-ab=6.可得k2﹣k1=6.即本题选择B.
学会将三角形面积的表达与反比例函数的定义联系起来.
6、C
【解析】
分析:根据旋转的定义得到即可.
详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),
所以点A绕原点逆时针旋转90°得到点B,
故选C.
点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.
7、C
【解析】
试题分析:反比例函数的性质:当时,图象位于一、三象限,在每一象限,y随x的增大而减小;当时,图象位于二、四象限,在每一象限,y随x的增大而增大.
解:A、因为,所以它的图象分布在一、三象限,B、它的图象过点(-1,-3),D、当,y的值随x的增大而减小,均正确,不符合题意;
C、当,y的值随x的增大而减小,故错误,本选项符合题意.
考点:反比例函数的性质
点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
8、B
【解析】
先求得方程的解,再根据x>0,得到关a的不等式并求出a的取值范围.
【详解】
解:去分母得,2x+a=-x+2
解得
∵分母x-2≠0即x≠2
解得,a≠-1
又∵x>0
解得,a<2
则a的取值范围是a<2且a≠-1.
故选:B
此题主要考查了分式方程的解,要熟练掌握,解答此类问题的关键是“转化思想”的应用,并要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、k<1
【解析】
分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.
详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),
∴n=﹣,
∴当n>1时,﹣>1,
解得,k<1,
故答案为k<1.
点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
10、
【解析】
根据解无理方程的方法可以解答此方程,注意无理方程要检验.
【详解】
∵,
∴,
∴1-2x=x2,
∴x2+2x-1=0,
∴(x+1)(x-1)=0,
解得,x1=-1,x2=1,
经检验,当x=1时,原方程无意义,当x=1时,原方程有意义,
故原方程的根是x=-1,
故答案为:x=-1.
本题考查无理方程,解答本题的关键是明确解无理方程的方法.
11、18
【解析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长
【详解】
∵CE平分∠BCD交AD边于点E,
∴.∠ECD=∠ECB
∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC
∴∠DEC=∠ECB,
∴∠DEC=∠DCE
∴DE=DC
∵AD=2AB
∴AD=2CD
∴AE=DE=AB=3
∴AD=6
∴四边形ABCD的周长为:2×(3+6)=18.
故答案为:18.
此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行
12、2 或9−3.
【解析】
分两种情况考虑:B′在横对称轴上与B′在竖对称轴上,分别求出BF的长即可.
【详解】
当B′在横对称轴上,此时AE=EB=3,如图1所示,
由折叠可得△ABF≌△AB′F
∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,
∴∠B′MF=∠B′FM,
∴B′M=B′F,
∵EB′∥BF,且E为AB中点,
∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,
∴EM=BF,
设BF=x,则有B′M=B′F=BF=x,EM=x,即EB′=x,
在Rt△AEB′中,根据勾股定理得:3 +(x) =6,
解得:x=2 ,即BF=2;
当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:
设BF=x,B′N=y,则有FN=4−x,
在Rt△FNB′中,根据勾股定理得:y+(4−x) =x,
∵∠AB′F=90°,
∴∠AB′M+∠NB′F=90°,
∵∠B′FN+∠NB′F=90°,
∴∠B′FN=∠AB′M,
∵∠AMB′=∠B′NF=90°,
∴△AMB′∽△B′NF,
∴ ,即,
∴y= x,
∴(x) +(4−x) =x,
解得x=9+3 ,x=9−3,
∵9+3>4,舍去,
∴x=9−3
所以BF的长为2或9−3,
故答案为:2 或9−3.
此题考查翻折变换(折叠问题),解题关键在于作辅助线
13、(,0)
【解析】
交点既在x轴上,又在直线直线y=3x-2上,而在x轴上的点其纵坐标为0,因此令y=0,代入关系式求出x即可.
【详解】
当y=0时,即3x-2=0,解得:x=,
∴直线y=3x-2与x轴的交点坐标为(,0),
故答案为:(,0).
本题考查直线与x轴的交点坐标,实际上就是令y=0,求x即可,数形结合更直观,更容易理解.
三、解答题(本大题共5个小题,共48分)
14、(1)药物燃烧时y关于x的函数关系式为:;药物燃烧后y关于x的函数关系式为:;(2)至少需要15分钟后学生方能回到教室;(3)此次消毒有效.
【解析】
(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(6,4)代入即可;药物燃烧后,设出y与x之间的解析式,把点(6,4)代入即可;
(2)把y=1.6代入反比例函数解析式,求出相应的x即可判断;
(3)把y=2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与9进行比较,不小于9就有效.
【详解】
解:(1)设药物燃烧时y关于x的函数关系式为y=k1x (k1≠0),
代入(6,4)得:4=6k1,解得:,
∴药物燃烧时y关于x的函数关系式为:;
设药物燃烧后y关于x的函数关系式为,
代入(6,4)得,解得:k2=24,
∴药物燃烧后y关于x的函数关系式为:;
(2)将y=1.6代入,解得:x=15,
所以从消毒开始,至少需要15分钟后学生方能回到教室;
(3)把y=2代入,得:x=3,
把y=2代入,得:x=12,
∵12−3=9,
所以此次消毒有效.
本题考查了一次函数和反比例函数的综合应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
15、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
【解析】
(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
∴DF∥AE,DF=AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
16、解:(1) yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
【解析】
(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;
(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;
(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.
【详解】
解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;
yB=10×30+3(10x﹣20)=30x+240;
(2)当yA=yB时,27x+270=30x+240,得x=10;
当yA>yB时,27x+270>30x+240,得x<10;
当yA<yB时,27x+270<30x+240,得x>10
∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.
(3)由题意知x=15,15>10,
∴选择A超市,yA=27×15+270=675(元),
先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:
(10×15﹣20)×3×0.9=351(元),
共需要费用10×30+351=651(元).
∵651元<675元,
∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.
17、(1),;(1)买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.
【解析】
(1)活动1:10支毛笔的付款金额,加上(x-10)本练习本的付款金额即可;活动1:将10支毛笔和x本练习本的总金额乘以0.9即可.
(1)可以任意选择一个优惠活动,也可两个活动同时选择,三种方案进行对比即可.
【详解】
(1)
(1)第三种方案:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1,此时实际付款金额
显然
令,得
解得
因此当时,最优惠的购买方案为:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.
本题考查一次函数的应用,理解两种优惠活动的付款金额计算方式是解题的关键.
18、(1)50人,补图见解析;(2)10,13.1,12.5;(3)132人
【解析】
分析:
(1)由条形统计图中的信息可知,捐款15元的有14人,占被抽查人数的28%,由此可得被抽查学生的总人数为:14÷28%=50(人),由此可得捐款10元的人数为:50-9-14-7-4=16(人),这样即可补全条形统计图了;
(2)根据补充完整的条形统计图中的信息进行分析解答即可;
(3)由条形统计图中的信息计算出捐款在20元及以上的学生占捐款学生总数的比值,然后由600乘以所得比值即可得到所求结果.
详解:
(1)由条形统计图和扇形统计图中的信息可得:被抽查学生总数为:14÷28%=50(人),
∴捐款10元的人数为:50-9-14-7-4=16(人),
由此补全条形统计图如下图所示:
(2)由条形统计图中的信息可知:捐款金额的众数是:10元;
捐款金额的平均数为:(元);
捐款金额的中位数为:(元);
(3)根据题意可得:全校捐款20元及以上的人数有:(人).
点睛:知道“条形统计图和扇形统计图中相关数据间的关系及众数、中位数和平均数的定义和确定方法”是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、m<3
【解析】
根据一次函数y=(m-3)x-2的图象经过二、三、四象限判断出m的取值范围即可.
【详解】
∵一次函数y=(m-3)x-2的图象经过二、三、四象限,
∴m-3<0,
∴m<3,
故答案为:m<3.
此题考查一次函数的图象与系数的关系,解题关键在于掌握一次函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限.
20、
【解析】
利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案
【详解】
解:设斜边上的高为h,
在Rt△ABC中,利用勾股定理可得:
根据三角形面积两种算法可列方程为:
解得:h=2.4cm,
故答案为2.4cm
本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.
21、1
【解析】
根据方程的解是函数图象与x轴的交点的横坐标,即可求解.
【详解】
解:∵函数y=kx+b的图象与x轴的交点坐标是(1,0),
∴方程kx+b=0的解是x=1.
故答案为:1.
本题考查一次函数与一元一次方程,方程的解是函数图象与x轴的交点的横坐标
22、(答案不唯一)
【解析】
根据平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可得出答案.
【详解】
根据平行四边形的判定,可再添加一个条件:
故答案为:(答案不唯一)
本题考查平行四边形的判定,掌握常见的判定方法是解题关键.
23、∠DAB=90°.
【解析】
根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.
【详解】
解:可以添加条件∠DAB=90°,
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
∵∠DAB=90°,
∴四边形ABCD是矩形,
故答案为∠DAB=90°.
此题主要考查了矩形的判定,关键是掌握矩形的判定定理.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
根据ABCD是菱形,找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,根据勾股定理求出即可.
【详解】
解:如图,连接DE交AC于点P,连接DB,
∵四边形ABCD是菱形,
∴点B、D关于AC对称(菱形的对角线相互垂直平分),
∴DP=BP,
∴PB+PE的最小值即是DP+PE的最小值(等量替换),
又∵ 两点之间线段最短,
∴DP+PE的最小值的最小值是DE,
又∵,CD=CB,
∴△CDB是等边三角形,
又∵点E为BC边的中点,
∴DE⊥BC(等腰三角形三线合一性质),
菱形ABCD的边长为2,
∴CD=2,CE=1,
由勾股定理得,
故答案为.
本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P点的位置是解题的关键.
25、(1)84.5,84;
(2)笔试成绩和面试成绩所占的百分比分别是40%,60%;
(3)综合成绩排序前两名的人选是4号和2号选手.
【解析】
试题分析:(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;
(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;
(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.
试题解析:(1)把这组数据从小到大排列为,80,84,84,85,90,92,
最中间两个数的平均数是(84+85)÷2=84.5(分),
则这6名选手笔试成绩的中位数是84.5,
84出现了2次,出现的次数最多,
则这6名选手笔试成绩的众数是84;
(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:
,
解得:,
笔试成绩和面试成绩各占的百分比是40%,60%;
(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),
3号选手的综合成绩是84×0.4+86×0.6=85.2(分),
4号选手的综合成绩是90×0.4+90×0.6=90(分),
5号选手的综合成绩是84×0.4+80×0.6=81.6(分),
6号选手的综合成绩是80×0.4+85×0.6=83(分),
则综合成绩排序前两名人选是4号和2号.
考点:1.加权平均数;2.中位数;3.众数;4.统计量的选择.
26、(1)90,1300;(2);(3)1.
【解析】
(1)由图像可得点可得答案;
(2)由图可知乙车间每小时加工服装:140÷2=70件,求解维修设备后坐标为,再把(4,140)、(9,490)代入乙车间的函数关系式y=kx+b,从而可得答案;
(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于,求出x值,可得答案.
【详解】
解:(1)由图像可得点 可得甲小时加工了件服装,
所以:甲车间每小时加工服装件数为件,
由图像可得点,可得乙加工的总数为件,
所以这批服装共有件.
故答案为:
(2)由图可知乙车间每小时加工服装:140÷2=70件,
所以:乙车间共需要:490÷70=7小时,
维修设备时间:9-7=2小时,
∴ 维修设备后坐标为,
设乙车间的函数关系式为:y=kx+b,
代入点(4,140)、(9,490),
得:
解得,
所以:y=70x﹣140;
(3)设甲车间代入点(9,110)得:
则9m=110,
解得:m=90,
所以:
由y + y1= 1140得:
70x﹣140+90x=1140
解得:x=1
答:甲、乙两车间共同加工完1140件服装时甲车间所用时间是1小时.
本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
题号
一
二
三
四
五
总分
得分
序号
项目
1
2
3
4
5
6
笔试成绩/分
85
92
84
90
84
80
面试成绩/分
90
88
86
90
80
85
内蒙古鄂尔多斯市东胜区第二中学2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份内蒙古鄂尔多斯市东胜区第二中学2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
内蒙古鄂尔多斯市东胜区2024年数学九上开学达标检测试题【含答案】: 这是一份内蒙古鄂尔多斯市东胜区2024年数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届内蒙古鄂尔多斯市东胜区数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2025届内蒙古鄂尔多斯市东胜区数学九年级第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。