|试卷下载
终身会员
搜索
    上传资料 赚现金
    内蒙古自治区鄂尔多斯市东胜区第二中学2024年九上数学开学经典模拟试题【含答案】
    立即下载
    加入资料篮
    内蒙古自治区鄂尔多斯市东胜区第二中学2024年九上数学开学经典模拟试题【含答案】01
    内蒙古自治区鄂尔多斯市东胜区第二中学2024年九上数学开学经典模拟试题【含答案】02
    内蒙古自治区鄂尔多斯市东胜区第二中学2024年九上数学开学经典模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古自治区鄂尔多斯市东胜区第二中学2024年九上数学开学经典模拟试题【含答案】

    展开
    这是一份内蒙古自治区鄂尔多斯市东胜区第二中学2024年九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列给出的四个点中,在直线的是( )
    A.B.C.D.
    2、(4分)某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)
    35 38 42 44 40 47 45 45
    则这组数据的中位数、平均数分别是( )
    A.42、42B.43、42C.43、43D.44、43
    3、(4分)如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=
    A.40°B.50°
    C.60°D.75°
    4、(4分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E,则以下AE与CE的数量关系正确的是( )
    A.AE=CEB.AE=CEC.AE=CED.AE=2CE
    5、(4分)如图,是反比例函数y1=和y2=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲于A、B两点,若S△AOB=3,则k2﹣k1的值是( )
    A.8B.6C.4D.2
    6、(4分)点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )
    A.关于x轴对称B.关于y轴对称
    C.绕原点逆时针旋转D.绕原点顺时针旋转
    7、(4分)关于反比例函数,下列说法中错误的是( )
    A.它的图象分布在一、三象限
    B.它的图象过点(-1,-3)
    C.当x>0时,y的值随x的增大而增大
    D.当x<0时,y的值随x的增大而减小
    8、(4分)若关于的方程的解为正数,则的取值范围是( )
    A.且B.且 C. 且 D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.
    10、(4分)方程的解是____.
    11、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.
    12、(4分)如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.
    13、(4分)直线y=3x-2与x轴的交点坐标为____________________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,
    (1)写出药物燃烧前后,y与x之间的函数表达式;
    (2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?
    (3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?
    15、(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
    (1)求证:△ADE≌△CBF;
    (2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
    16、(8分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
    A超市:所有商品均打九折(按标价的90%)销售;
    B超市:买一副羽毛球拍送2个羽毛球.
    设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:
    (1)分别写出yA、yB与x之间的关系式;
    (2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?
    (3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
    17、(10分)某文具商店的某种毛笔每支售价25元,书法练习本每本售价5元,该商店为促销正在进行优惠活动:
    活动1:买一支毛笔送一本书法练习本;
    活动2:按购买金额的九折付款.
    某学校准备为书法兴趣小组购买这种毛笔20支,书法练习本x(x≥20)本.
    (1)写出两种优惠活动实际付款金额y1(元),y2(元)与x(本)之间的函数关系式;
    (2)请问:该校选择哪种优惠活动更合算?
    18、(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.

    (1)本次共抽查学生 人,并将条形图补充完整;
    (2)捐款金额的众数是 平均数是 中位数为
    (3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一次函数的图象经过第二、三、四象限,则的取值范围是__________.
    20、(4分)在中,,,,则斜边上的高为________.
    21、(4分)如果函数y=kx+b的图象与x轴交点的坐标是(3,0),那么一元一次方程kx+b=0的解是_____.
    22、(4分)四边形ABCD中,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的边的条件是_________.
    23、(4分)如图,在四边形ABCD中,对角线AC,BD交于点O,且OA=OC,OB=OD,要使四边形ABCD为矩形,则需要添加的条件是_______(只填一个即可).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,菱形ABCD的边长为2,,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为_____.
    25、(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
    根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).
    (1)这6名选手笔试成绩的中位数是________分,众数是________分;
    (2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;
    (3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
    26、(12分)甲、乙两车间同时开始加工—批服装.从开始加工到加工完这批服装甲车间工作了小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为(件).甲车间加工的时间为(时),与之间的函数图象如图所示.
    (1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件;
    (2)求乙车间维修设备后,乙车间加工服装数量与之间的函数关系式;
    (3)求甲、乙两车间共同加工完1140件服装时甲车间所用的时间.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    只需把每个点的横坐标即x的值分别代入,计算出对应的y值,然后与对应的纵坐标比较即可.
    【详解】
    解:A、当时,,则不在直线上;
    B、当时,,则不在直线上;
    C、当时,,则不在直线上;
    D、当时,,则在直线上;
    故选:D.
    本题考查判断点是否在直线上,知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.
    2、B
    【解析】
    分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.
    详解:把这组数据排列顺序得:35 38 40 1 44 45 45 47,则这组数据的中位数为:=43,=(35+38+1+44+40+47+45+45)=1.
    故选B.
    点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.
    3、B
    【解析】
    分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.
    详解:∵∠B=∠D=90°
    在Rt△ABC和Rt△ADC中

    ∴Rt△ABC≌Rt△ADC(HL)
    ∴∠2=∠ACB=90°-∠1=50°.
    故选B.
    点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
    4、D
    【解析】
    首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.
    【详解】
    连接BE,
    ∵DE是AB的垂直平分线,
    ∴AE=BE,
    ∴∠ABE=∠A=30°,
    ∴∠CBE=∠ABC-∠ABE=30°,
    在Rt△BCE中,BE=2CE,
    ∴AE=2CE,
    故选D.
    此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
    5、B
    【解析】
    本题主要考察反比例函数系数的几何意义,反比例函数图像上点的坐标特征,三角形面积等知识点.
    【详解】
    设A(a,b),B(c,d),代入双曲线得到k1=ab, k2=cd.因为三角形AOB的面积为3.所以cd-ab=3.即cd-ab=6.可得k2﹣k1=6.即本题选择B.
    学会将三角形面积的表达与反比例函数的定义联系起来.
    6、C
    【解析】
    分析:根据旋转的定义得到即可.
    详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),
    所以点A绕原点逆时针旋转90°得到点B,
    故选C.
    点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.
    7、C
    【解析】
    试题分析:反比例函数的性质:当时,图象位于一、三象限,在每一象限,y随x的增大而减小;当时,图象位于二、四象限,在每一象限,y随x的增大而增大.
    解:A、因为,所以它的图象分布在一、三象限,B、它的图象过点(-1,-3),D、当,y的值随x的增大而减小,均正确,不符合题意;
    C、当,y的值随x的增大而减小,故错误,本选项符合题意.
    考点:反比例函数的性质
    点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
    8、B
    【解析】
    先求得方程的解,再根据x>0,得到关a的不等式并求出a的取值范围.
    【详解】
    解:去分母得,2x+a=-x+2
    解得
    ∵分母x-2≠0即x≠2
    解得,a≠-1
    又∵x>0
    解得,a<2
    则a的取值范围是a<2且a≠-1.
    故选:B
    此题主要考查了分式方程的解,要熟练掌握,解答此类问题的关键是“转化思想”的应用,并要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、k<1
    【解析】
    分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.
    详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),
    ∴n=﹣,
    ∴当n>1时,﹣>1,
    解得,k<1,
    故答案为k<1.
    点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
    10、
    【解析】
    根据解无理方程的方法可以解答此方程,注意无理方程要检验.
    【详解】
    ∵,
    ∴,
    ∴1-2x=x2,
    ∴x2+2x-1=0,
    ∴(x+1)(x-1)=0,
    解得,x1=-1,x2=1,
    经检验,当x=1时,原方程无意义,当x=1时,原方程有意义,
    故原方程的根是x=-1,
    故答案为:x=-1.
    本题考查无理方程,解答本题的关键是明确解无理方程的方法.
    11、18
    【解析】
    利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长
    【详解】
    ∵CE平分∠BCD交AD边于点E,
    ∴.∠ECD=∠ECB
    ∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC
    ∴∠DEC=∠ECB,
    ∴∠DEC=∠DCE
    ∴DE=DC
    ∵AD=2AB
    ∴AD=2CD
    ∴AE=DE=AB=3
    ∴AD=6
    ∴四边形ABCD的周长为:2×(3+6)=18.
    故答案为:18.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行
    12、2 或9−3.
    【解析】
    分两种情况考虑:B′在横对称轴上与B′在竖对称轴上,分别求出BF的长即可.
    【详解】
    当B′在横对称轴上,此时AE=EB=3,如图1所示,
    由折叠可得△ABF≌△AB′F
    ∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,
    ∴∠B′MF=∠B′FM,
    ∴B′M=B′F,
    ∵EB′∥BF,且E为AB中点,
    ∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,
    ∴EM=BF,
    设BF=x,则有B′M=B′F=BF=x,EM=x,即EB′=x,
    在Rt△AEB′中,根据勾股定理得:3 +(x) =6,
    解得:x=2 ,即BF=2;
    当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:
    设BF=x,B′N=y,则有FN=4−x,
    在Rt△FNB′中,根据勾股定理得:y+(4−x) =x,
    ∵∠AB′F=90°,
    ∴∠AB′M+∠NB′F=90°,
    ∵∠B′FN+∠NB′F=90°,
    ∴∠B′FN=∠AB′M,
    ∵∠AMB′=∠B′NF=90°,
    ∴△AMB′∽△B′NF,
    ∴ ,即,
    ∴y= x,
    ∴(x) +(4−x) =x,
    解得x=9+3 ,x=9−3,
    ∵9+3>4,舍去,
    ∴x=9−3
    所以BF的长为2或9−3,
    故答案为:2 或9−3.
    此题考查翻折变换(折叠问题),解题关键在于作辅助线
    13、(,0)
    【解析】
    交点既在x轴上,又在直线直线y=3x-2上,而在x轴上的点其纵坐标为0,因此令y=0,代入关系式求出x即可.
    【详解】
    当y=0时,即3x-2=0,解得:x=,
    ∴直线y=3x-2与x轴的交点坐标为(,0),
    故答案为:(,0).
    本题考查直线与x轴的交点坐标,实际上就是令y=0,求x即可,数形结合更直观,更容易理解.
    三、解答题(本大题共5个小题,共48分)
    14、(1)药物燃烧时y关于x的函数关系式为:;药物燃烧后y关于x的函数关系式为:;(2)至少需要15分钟后学生方能回到教室;(3)此次消毒有效.
    【解析】
    (1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(6,4)代入即可;药物燃烧后,设出y与x之间的解析式,把点(6,4)代入即可;
    (2)把y=1.6代入反比例函数解析式,求出相应的x即可判断;
    (3)把y=2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与9进行比较,不小于9就有效.
    【详解】
    解:(1)设药物燃烧时y关于x的函数关系式为y=k1x (k1≠0),
    代入(6,4)得:4=6k1,解得:,
    ∴药物燃烧时y关于x的函数关系式为:;
    设药物燃烧后y关于x的函数关系式为,
    代入(6,4)得,解得:k2=24,
    ∴药物燃烧后y关于x的函数关系式为:;
    (2)将y=1.6代入,解得:x=15,
    所以从消毒开始,至少需要15分钟后学生方能回到教室;
    (3)把y=2代入,得:x=3,
    把y=2代入,得:x=12,
    ∵12−3=9,
    所以此次消毒有效.
    本题考查了一次函数和反比例函数的综合应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
    15、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
    【解析】
    (1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
    (2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AB=CD,∠A=∠C,
    ∵E、F分别为边AB、CD的中点,
    ∴AE=AB,CF=CD,
    ∴AE=CF,
    在△ADE和△CBF中,

    ∴△ADE≌△CBF(SAS);
    (2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
    解:由(1)可得BE=DF,
    又∵AB∥CD,
    ∴BE∥DF,BE=DF,
    ∴四边形BEDF是平行四边形,
    连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
    ∴DF∥AE,DF=AE,
    ∴四边形AEFD是平行四边形,
    ∴EF∥AD,
    ∵∠ADB是直角,
    ∴AD⊥BD,
    ∴EF⊥BD,
    又∵四边形BFDE是平行四边形,
    ∴四边形BFDE是菱形.
    1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
    16、解:(1) yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
    【解析】
    (1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;
    (2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;
    (3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.
    【详解】
    解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;
    yB=10×30+3(10x﹣20)=30x+240;
    (2)当yA=yB时,27x+270=30x+240,得x=10;
    当yA>yB时,27x+270>30x+240,得x<10;
    当yA<yB时,27x+270<30x+240,得x>10
    ∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.
    (3)由题意知x=15,15>10,
    ∴选择A超市,yA=27×15+270=675(元),
    先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:
    (10×15﹣20)×3×0.9=351(元),
    共需要费用10×30+351=651(元).
    ∵651元<675元,
    ∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
    本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.
    17、(1),;(1)买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.
    【解析】
    (1)活动1:10支毛笔的付款金额,加上(x-10)本练习本的付款金额即可;活动1:将10支毛笔和x本练习本的总金额乘以0.9即可.
    (1)可以任意选择一个优惠活动,也可两个活动同时选择,三种方案进行对比即可.
    【详解】
    (1)
    (1)第三种方案:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1,此时实际付款金额
    显然
    令,得
    解得
    因此当时,最优惠的购买方案为:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.
    本题考查一次函数的应用,理解两种优惠活动的付款金额计算方式是解题的关键.
    18、(1)50人,补图见解析;(2)10,13.1,12.5;(3)132人
    【解析】
    分析:
    (1)由条形统计图中的信息可知,捐款15元的有14人,占被抽查人数的28%,由此可得被抽查学生的总人数为:14÷28%=50(人),由此可得捐款10元的人数为:50-9-14-7-4=16(人),这样即可补全条形统计图了;
    (2)根据补充完整的条形统计图中的信息进行分析解答即可;
    (3)由条形统计图中的信息计算出捐款在20元及以上的学生占捐款学生总数的比值,然后由600乘以所得比值即可得到所求结果.
    详解:
    (1)由条形统计图和扇形统计图中的信息可得:被抽查学生总数为:14÷28%=50(人),
    ∴捐款10元的人数为:50-9-14-7-4=16(人),
    由此补全条形统计图如下图所示:
    (2)由条形统计图中的信息可知:捐款金额的众数是:10元;
    捐款金额的平均数为:(元);
    捐款金额的中位数为:(元);
    (3)根据题意可得:全校捐款20元及以上的人数有:(人).
    点睛:知道“条形统计图和扇形统计图中相关数据间的关系及众数、中位数和平均数的定义和确定方法”是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、m<3
    【解析】
    根据一次函数y=(m-3)x-2的图象经过二、三、四象限判断出m的取值范围即可.
    【详解】
    ∵一次函数y=(m-3)x-2的图象经过二、三、四象限,
    ∴m-3<0,
    ∴m<3,
    故答案为:m<3.
    此题考查一次函数的图象与系数的关系,解题关键在于掌握一次函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限.
    20、
    【解析】
    利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案
    【详解】
    解:设斜边上的高为h,
    在Rt△ABC中,利用勾股定理可得:
    根据三角形面积两种算法可列方程为:
    解得:h=2.4cm,
    故答案为2.4cm
    本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.
    21、1
    【解析】
    根据方程的解是函数图象与x轴的交点的横坐标,即可求解.
    【详解】
    解:∵函数y=kx+b的图象与x轴的交点坐标是(1,0),
    ∴方程kx+b=0的解是x=1.
    故答案为:1.
    本题考查一次函数与一元一次方程,方程的解是函数图象与x轴的交点的横坐标
    22、(答案不唯一)
    【解析】
    根据平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可得出答案.
    【详解】
    根据平行四边形的判定,可再添加一个条件:
    故答案为:(答案不唯一)
    本题考查平行四边形的判定,掌握常见的判定方法是解题关键.
    23、∠DAB=90°.
    【解析】
    根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.
    【详解】
    解:可以添加条件∠DAB=90°,
    ∵AO=CO,BO=DO,
    ∴四边形ABCD是平行四边形,
    ∵∠DAB=90°,
    ∴四边形ABCD是矩形,
    故答案为∠DAB=90°.
    此题主要考查了矩形的判定,关键是掌握矩形的判定定理.
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    根据ABCD是菱形,找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,根据勾股定理求出即可.
    【详解】
    解:如图,连接DE交AC于点P,连接DB,
    ∵四边形ABCD是菱形,
    ∴点B、D关于AC对称(菱形的对角线相互垂直平分),
    ∴DP=BP,
    ∴PB+PE的最小值即是DP+PE的最小值(等量替换),
    又∵ 两点之间线段最短,
    ∴DP+PE的最小值的最小值是DE,
    又∵,CD=CB,
    ∴△CDB是等边三角形,
    又∵点E为BC边的中点,
    ∴DE⊥BC(等腰三角形三线合一性质),
    菱形ABCD的边长为2,
    ∴CD=2,CE=1,
    由勾股定理得,
    故答案为.
    本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P点的位置是解题的关键.
    25、(1)84.5,84;
    (2)笔试成绩和面试成绩所占的百分比分别是40%,60%;
    (3)综合成绩排序前两名的人选是4号和2号选手.
    【解析】
    试题分析:(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;
    (2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;
    (3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.
    试题解析:(1)把这组数据从小到大排列为,80,84,84,85,90,92,
    最中间两个数的平均数是(84+85)÷2=84.5(分),
    则这6名选手笔试成绩的中位数是84.5,
    84出现了2次,出现的次数最多,
    则这6名选手笔试成绩的众数是84;
    (2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:

    解得:,
    笔试成绩和面试成绩各占的百分比是40%,60%;
    (3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),
    3号选手的综合成绩是84×0.4+86×0.6=85.2(分),
    4号选手的综合成绩是90×0.4+90×0.6=90(分),
    5号选手的综合成绩是84×0.4+80×0.6=81.6(分),
    6号选手的综合成绩是80×0.4+85×0.6=83(分),
    则综合成绩排序前两名人选是4号和2号.
    考点:1.加权平均数;2.中位数;3.众数;4.统计量的选择.
    26、(1)90,1300;(2);(3)1.
    【解析】
    (1)由图像可得点可得答案;
    (2)由图可知乙车间每小时加工服装:140÷2=70件,求解维修设备后坐标为,再把(4,140)、(9,490)代入乙车间的函数关系式y=kx+b,从而可得答案;
    (3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于,求出x值,可得答案.
    【详解】
    解:(1)由图像可得点 可得甲小时加工了件服装,
    所以:甲车间每小时加工服装件数为件,
    由图像可得点,可得乙加工的总数为件,
    所以这批服装共有件.
    故答案为:
    (2)由图可知乙车间每小时加工服装:140÷2=70件,
    所以:乙车间共需要:490÷70=7小时,
    维修设备时间:9-7=2小时,
    ∴ 维修设备后坐标为,
    设乙车间的函数关系式为:y=kx+b,
    代入点(4,140)、(9,490),
    得:
    解得,
    所以:y=70x﹣140;
    (3)设甲车间代入点(9,110)得:
    则9m=110,
    解得:m=90,
    所以:
    由y + y1= 1140得:
    70x﹣140+90x=1140
    解得:x=1
    答:甲、乙两车间共同加工完1140件服装时甲车间所用时间是1小时.
    本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
    题号





    总分
    得分
    序号
    项目
    1
    2
    3
    4
    5
    6
    笔试成绩/分
    85
    92
    84
    90
    84
    80
    面试成绩/分
    90
    88
    86
    90
    80
    85
    相关试卷

    内蒙古鄂尔多斯市东胜区第二中学2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份内蒙古鄂尔多斯市东胜区第二中学2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    内蒙古鄂尔多斯市东胜区2024年数学九上开学达标检测试题【含答案】: 这是一份内蒙古鄂尔多斯市东胜区2024年数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届内蒙古鄂尔多斯市东胜区数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2025届内蒙古鄂尔多斯市东胜区数学九年级第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map