终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    宁夏省固原市2024年数学九年级第一学期开学监测试题【含答案】

    立即下载
    加入资料篮
    宁夏省固原市2024年数学九年级第一学期开学监测试题【含答案】第1页
    宁夏省固原市2024年数学九年级第一学期开学监测试题【含答案】第2页
    宁夏省固原市2024年数学九年级第一学期开学监测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    宁夏省固原市2024年数学九年级第一学期开学监测试题【含答案】

    展开

    这是一份宁夏省固原市2024年数学九年级第一学期开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一次函数的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    2、(4分)若实数a满足,那么a的取值情况是( )
    A.B.C.或D.
    3、(4分)某铁工艺品商城某天销售了110件工艺品,其统计如表:
    该店长如果想要了解哪个货种的销售量最大,那么他应该关注的统计量是( )
    A.平均数B.众数C.中位数D.方差
    4、(4分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )
    A.如果∠C﹣∠B=∠A,则△ABC是直角三角形
    B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°
    C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形
    D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形
    5、(4分)如图,在△ABC中,点D、E分别是AB、AC的中点,下列结论不正确的是( )
    A.DE∥BCB.BC=2DEC.DE=2BCD.∠ADE=∠B
    6、(4分)在平行四边形中,于点,于点,若,,平行四边形的周长为,则( )
    A.B.C.D.
    7、(4分)以和为根的一元二次方程是( )
    A.B.C.D.
    8、(4分)在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为,N的坐标为,则在第二象限内的点是( )
    A.A点B.B点C.C点D.D
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是____.
    10、(4分)在函数中,自变量的取值范围是__________.
    11、(4分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为 cm.
    12、(4分)某射手在相同条件下进行射击训练,结果如下:
    该射手击中靶心的概率的估计值是______(精确到0.01).
    13、(4分)如图,在平行四边形ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)材料:思考的同学小斌在解决连比等式问题:“已知正数,,满足,求的值”时,采用了引入参数法,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出,,之间的关系,从而解决问题.过程如下:
    解;设,则有:
    ,,,
    将以上三个等式相加,得.
    ,,都为正数,
    ,即,.
    .
    仔细阅读上述材料,解决下面的问题:
    (1)若正数,,满足,求的值;
    (2)已知,,,互不相等,求证:.
    15、(8分)解方程:
    (1)x2-3x+1=1;
    (2)x(x+3)-(2x+6)=1.
    16、(8分)如图,直线l1:y1=−x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.
    (1)求两直线交点D的坐标;
    (2)求△ABD的面积;
    (3)根据图象直接写出y1>y2时自变量x的取值范围.
    17、(10分)为引导学生广泛阅读古今文学名著,某校开展了读书活动.学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:
    学生平均每周阅读时间频数分布表
    请根据以上信息,解答下列问题;
    (1)在频数分布表中,a=______,b=______;
    (2)补全频数分布直方图;
    (3)如果该校有1600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有多少人?
    18、(10分)矩形不一定具有的性质是( )
    A.对角线互相平分B.对角线互相垂直
    C.对角线相等D.是轴对称图形
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,的对角线,相交于点,且,,,则的面积为______.
    20、(4分)当x _________时,分式有意义.
    21、(4分)端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖_____元.
    22、(4分)如图,正比例函数的图象与反比例函数的图象交于A(2,1),B两点,则不等式的解集是_________.
    23、(4分)直线 y=2x+3 与 x 轴相交于点 A,则点 A 的坐标为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,直线与x轴相交于点A,与直线相交于点P.
    (1)求点P的坐标.
    (2)请判断△OPA的形状并说明理由.
    (3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求S与t之间的函数关系式.
    25、(10分)如图,在中,点是对角线的中点,点在上,且,连接并延长交于点F.过点作的垂线,垂足为,交于点.
    (1)求证:;
    (2)若.
    ①求证:;
    ②探索与的数量关系,并说明理由.
    26、(12分)将矩形纸片沿对角线翻折,使点的对应点(落在矩形所在平面内,与相交于点,接.

    (1)在图1中,
    ①和的位置关系为__________________;
    ②将剪下后展开,得到的图形是_________________;
    (2)若图1中的矩形变为平行四边形时(),如图2所示,结论①、②是否成立,若成立,请对结论②加以证明,若不成立,请说明理由
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限
    【详解】
    解:∵,
    ∴函数图象一定经过一、三象限;
    又∵,函数与y轴交于y轴负半轴,
    ∴函数经过一、三、四象限,不经过第二象限
    故选B
    此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响
    2、D
    【解析】
    根据二次根式的性质即可解答.
    【详解】
    由题意可知:=﹣a+2=﹣(a﹣2),
    ∴a﹣2≤0,
    ∴a≤2,
    故选D.
    本题考查了二次根式的性质,熟知是解决问题的关键.
    3、B
    【解析】
    根据众数的概念:数据中出现次数最多的数,即可得出他应该关注的统计量.
    【详解】
    由于众数是数据中出现次数最多的数,所以想要了解哪个货种的销售量最大,应该关注的统计量是这组数据中的众数.
    故选:B.
    本题主要考查统计的相关知识,掌握平均数,众数,中位数,方差的意义是解题的关键.
    4、B
    【解析】
    直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.
    【详解】
    解:A、∵∠C+∠B+∠A=180°(三角形内角和定理),∠C﹣∠B=∠A,∴∠C+∠B+(∠C﹣∠B)=180°,∴2∠C=180°,∴∠C=90°,故该选项正确,
    B、如果c2=b2﹣a2,则△ABC是直角三角形,且∠B=90°,故该选项错误,
    C、化简后有c2=a2+b2,则△ABC是直角三角形,故该选项正确,
    D、设三角分别为5x,3x,2x,根据三角形内角和定理可得,5x+3x+2x=180°,则x=18°,所以这三个角分别为:90度,36度,54度,则△ABC是直角三角形,故该选项正确.
    故选B.
    考查了命题与定理的知识,解题的关键是了解直角三角形的判定方法.
    5、C
    【解析】
    根据三角形的中位线定理得出DE是△ABC的中位线,再由中位线的性质得出结论.
    【详解】
    解:∵在△ABC中,点D、E分别是边AB、AC的中点,
    ∴DE//BC,DE=BC,
    ∴BC=2DE,∠ADE=∠B,
    故选C.
    本题考查了三角形的中位线定理,根据三角形的中位线的定义得出DE是△ABC的中位线是解答此题的关键.
    6、D
    【解析】
    已知平行四边形的高AE、AF,设BC=xcm,则CD=(20-x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.
    【详解】
    解:设BC=xcm,则CD=(20−x)cm,
    根据“等面积法”得,4x=6(20−x),
    解得x=12,
    ∴平行四边形ABCD的面积=4x=4×12=48;
    故选D.
    本题主要考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.
    7、B
    【解析】
    根据已知两根确定出所求方程即可.
    【详解】
    以2和4为根的一元二次方程是x2﹣6x+8=0,
    故选B.
    此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.
    8、D
    【解析】
    根据点的坐标特征,可得答案.
    【详解】
    MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内.
    故选A.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    过D作DE⊥AB于E,则DE=1,根据角平分线性质求出CD=DE=1,求出BD即可.
    【详解】
    过D作DE⊥AB于E.
    ∵点D到边AB的距离为1,∴DE=1.
    ∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=1.
    ∵CDDB,∴DB=12,∴BC=1+12=2.
    故答案为2.
    本题考查了角平分线性质的应用,注意:角平分线上的点到这个角的两边的距离相等.
    10、x≠2
    【解析】
    根据分式有意义的条件进行求解即可.
    【详解】
    由题意得,2x-4≠0,
    解得:x≠2,
    故答案为:x≠2.
    本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    11、4.
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∴OA=AC,OB=BD,BD=AC=8cm,
    ∴OA=OB=4cm,
    ∵∠AOD=120°,
    ∴∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴AB=OA=4cm.
    考点:矩形的性质.
    12、0.1.
    【解析】
    根据表格中实验的频率,然后根据频率即可估计概率.
    【详解】
    解:由击中靶心频率都在0.1上下波动,
    ∴该射手击中靶心的概率的估计值是0.1.
    故答案为:0.1.
    本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
    13、40°.
    【解析】
    根据平行四边形的性质得到AD∥BC,求得∠AEB=∠CBE,根据等腰三角形的性质得到∠ABE=∠AEB,根据平角的定义得到∠AEB=20°,可得∠ABC的度数,根据平行四边形的对角相等即可得结论.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠AEB=∠CBE,
    ∵AB=AE,
    ∴∠ABE=∠AEB,
    ∵∠BED=160°,
    ∴∠AEB=20°,
    ∴∠ABC=∠ABE+∠CBE=2∠AEB=40°,
    ∴∠D=∠ABC=40°.
    故答案为40°.
    本题考查平行四边形的性质,平行线的性质,等腰三角形的性质,正确的识别图形是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)k=;(2)见解析.
    【解析】
    (1)根据题目中的例子可以解答本题;
    (2)将题目中的式子巧妙变形,然后化简即可证明结论成立.
    【详解】
    解:(1)∵正数x、y、z满足,
    ∴x=k(2y+z),y=k(2z+x),z=k(2x+y),
    ∴x+y+z=3k(x+y+z),
    ∵x、y、z均为正数,
    ∴k=;
    (2)证明:设=k,
    则a+b=k(a-b),b+c=2k(b-c),c+a=3k(c-a),
    ∴6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a),
    ∴6(a+b)+3(b+c)+2(c+a)=1,
    ∴8a+9b+5c=1.
    故答案为:(1)k=;(2)见解析.
    本题考查比例的性质、等式的基本性质,正确理解给出的解题过程是解题的关键.
    15、(4)x4=,x2=;(2)x4=-3,x2=2.
    【解析】
    试题分析:(4)直接利用公式法求出x的值即可;
    (2)先把原方程进行因式分解,再求出x的值即可.
    试题解析:(4)∵一元二次方程x2-3x+4=4中,a=4,b=-3,c=4,
    ∴△=b2-4ac=(-3)2-4×4×4=3.
    ∴x=.
    即x4=,x2=;
    (2)∵因式分解得 (x+3)(x-2)=4,
    ∴x+3=4或x-2=4,
    解得 x4=-3,x2=2.
    考点:4.解一元二次方程-因式分解法;2.解一元二次方程-公式法.
    16、(1)D点坐标为(4,3)(1)15;(3)x<4
    【解析】
    试题分析:(1)先得到两函数的解析式,组成方程组解求出D的坐标;(1)由y1=
    x+1可知,C点坐标为(0,1),分别求出△ABC和△ACD的面积,相加即可.(3)由图可直接得出y1>y1时自变量x的取值范围.
    试题解析:(1)将A(0,6)代入y1=−x+m得,m=6;将B(-1,0)代入y1=kx+1得,k=
    组成方程组得解得 故D点坐标为(4,3);
    (1)由y1=x+1可知,C点坐标为(0,1),S△ABD=S△ABC+S△ACD=×5×1+×5×4=15;
    (3)由图可知,在D点左侧时,y1>y1,即x<4时,出y1>y1.
    17、(1)80,0.1;(2)见详解;(3)1000人
    【解析】
    (1)求出总人数,总人数乘以0.2即可得到a,110除以总人数即可得到b.
    (2)根据(1)中计算和表中信息画图.
    (3)根据用样本估计总体的方法求解.
    【详解】
    解:(1)10÷0.025=400人;
    a=400×0.2=80人,b==0.1;
    故答案为80,0.1.
    (2)如图:
    (3)1600×(0.1+0.25+0.1)=1000人.
    本题考查了频数分布直方图、频数分布表,两图结合是解题的关键.
    18、B
    【解析】
    根据矩形的性质解答即可.
    【详解】
    解:∵矩形的对角线线段,四个角是直角,对角线互相平分,
    ∴选项A、C、D正确,
    故选:B.
    本题考查矩形的性质,解题的关键是记住矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等; ⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=AC=5,OB=BD=13,再利用勾股定理的逆定理判定∠BAC=90°, 由平行四边形的面积公式求解即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴OA=AC=5,OB=BD=13,
    ∵AB=12,
    ∴OA2+OB2=AB2,
    ∴AC⊥AB,
    ∴∠BAC=90°,
    ∴▱ABCD的面积=AB•AC=12×10=1;
    故答案为:1.
    本题考查了平行四边形的性质及勾股定理的逆定理,正确判定∠BAC=90°是解决问题的关键.
    20、≠3
    【解析】
    解:根据题意得x-3≠0,即x≠3
    故答案为:≠3
    21、2
    【解析】
    设平时每个粽子卖x元,根据题意列出分式方程,解之并检验得出结论.
    【详解】
    设平时每个粽子卖x元.
    根据题意得:
    解得:x=2
    经检验x=2是分式方程的解
    故答案为2.
    本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.
    22、﹣1<x<0或x>1
    【解析】
    根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.
    【详解】
    ∵正比例函数y=kx的图象与反比例函数y的图象交于A(1,1),B两点,∴B(﹣1,﹣1).
    观察函数图象,发现:当﹣1<x<0或x>1时,正比例函数图象在反比例函数图象的上方,∴不等式kx的解集是﹣1<x<0或x>1.
    故答案为:﹣1<x<0或x>1.
    本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.
    23、(−,0)
    【解析】
    根据一次函数与x轴的交点,y=0;即可求出A点的坐标.
    【详解】
    解:∵当y=0时,有
    ,解得:,
    ∴A点的坐标为(−,0);
    故答案为:(−,0).
    本题考查了一次函数与x轴的交点坐标,解答此题的关键是熟知一次函数与坐标轴的交点,与x轴有交点,则y=0.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)△POA是等边三角形,理由见解析;(3)当0<t≤4时,,当4<t<8时,
    【解析】
    (1)将两直线的解析式联立组成方程组,解得x、y的值即为两直线的交点坐标的横纵坐标;
    (2)求得直线AP与x轴的交点坐标(4,0),利用OP=4PA=4得到OA=OP=PA从而判定△POA是等边三角形;
    (3)分别求得OF和EF的值,利用三角形的面积计算方法表示出三角形的面积即可.
    【详解】
    解:(1)解方程组,
    解得:.
    ∴点P的坐标为:;
    (2)当y=0时,x=4,
    ∴点A的坐标为(4,0).
    ∵,
    ∴OA=OP=PA,
    ∴△POA是等边三角形;
    (3)①当0<t≤4时,如图,在Rt△EOF中,
    ∵∠EOF=60°,OE=t,
    ∴EF=,OF=,
    ∴.
    当4<t<8时,如图,设EB与OP相交于点C,
    ∵CE=PE=t-4,AE=8-t,
    ∴AF=4-,EF=,
    ∴OF=OA-AF=4-(4-)=,

    =;
    综合上述,可得:当0<t≤4时,;当4<t<8时,.
    本题主要考查了一次函数的综合知识,解题的关键是正确的利用一次函数的性质求与坐标轴的交点坐标并转化为线段的长.
    25、(1)见解析;(2)①见解析,②,理由见解析.
    【解析】
    (1)根据平行四边形的性质得到∠OAF=∠OCE,证明△OAF≌△OCE,根据全等三角形的对应边相等证明结论;
    (2)①过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,根据三角形的外角性质得到∠BAG=∠BGA;
    ②证明△AME≌△BNG,根据全等三角形的性质得到ME=NG,根据等腰直角三角形的性质得到BE=GC,根据(1)中结论证明即可.
    【详解】
    (1)证明:∵四边形是平行四边形,
    ∴,,
    ∴,
    在和中,


    ∴,
    ∵,
    ∴;
    (2)①过作于,交于,过作于,
    则,
    ∵,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,又,
    ∴,
    设,
    则,,
    ∴;
    ②,
    理由如下:∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    在等腰中,,
    ∴,
    ∴,
    ∵,
    ∴.
    本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.
    26、 (1)①平行;②菱形; (2)结论①、②都成立,理由详见解析.
    【解析】
    (1)①由平行线的性质和折叠的性质可得∠DAC=∠ACE,由∠AB'C=∠ADC=90°,可证点A,点C,点D,点B'四点共圆,可得∠ADB'=∠ACE=∠DAC,可得AC∥B'D;②由菱形的定义可求解;
    (2)都成立,设点E的对应点为F,由平行线的性质和折叠的性质可得∠DAC=∠ACE,AF=AE,CE=CF,可得AF=AE=CE=CF,可得四边形AECF是菱形.
    【详解】
    解:(1)①∵四边形ABCD是矩形
    ∴AD∥BC,∠B=∠ADC=90°
    ∴∠DAC=∠ACB
    ∵将矩形纸片ABCD沿对角线AC翻折,
    ∴∠AB'C=∠B=90°,∠ACB=∠ACE
    ∴∠DAC=∠ACE,
    ∴AE=EC
    ∵∠AB'C=∠ADC=90°
    ∴点A,点C,点D,点B'四点共圆,
    ∴∠ADB'=∠ACE,
    ∴∠ADB'=∠DAC
    ∴B'D∥AC,
    故答案为:平行
    ②∵将△AEC剪下后展开,AE=EC
    ∴展开图形是四边相等的四边形,
    ∴展开图形是菱形
    (2)都成立,
    如图2,设点E的对应点为F,
    ∵四边形ABCD是平行四边形
    ∴AD∥BC,
    ∴∠DAC=∠ACB
    ∵将矩形纸片ABCD沿对角线AC翻折,
    ∴∠ACB=∠ACE,AF=AE,CE=CF
    ∴∠DAC=∠ACE,
    ∴AE=EC
    ∴AF=AE=CE=CF
    四边形是菱形.
    本题是四边形综合题,考查了矩形的性质,平行四边形的性质,折叠的性质,菱形的判定,灵活运用这些性质进行推理是本题的关键.
    题号





    总分
    得分
    批阅人
    货种
    A
    B
    C
    D
    E
    销售量(件)
    10
    40
    30
    10
    20
    平均每周阅读时间x(时)
    频数
    频率
    0≤x<2
    10
    0.025
    2≤x<4
    60
    0.150
    4≤x<6
    a
    0.200
    6≤x<8
    110
    b
    8≤x<10
    100
    0.250
    10≤x≤12
    40
    0.100
    合计
    400
    1.000

    相关试卷

    2025届宁夏省固原市九上数学开学综合测试试题【含答案】:

    这是一份2025届宁夏省固原市九上数学开学综合测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年宁夏省固原市泾源县九年级数学第一学期开学检测试题【含答案】:

    这是一份2024-2025学年宁夏省固原市泾源县九年级数学第一学期开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    宁夏省固原市泾源县2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案:

    这是一份宁夏省固原市泾源县2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了已知2x=5y等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map