曲靖市沾益区大坡乡2024年九上数学开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数与在同一坐标系内的图像可能是( )
A.B.
C.D.
2、(4分)下列函数中,是一次函数的是( ).
① ② ③ ④ ⑤
A.①⑤B.①④⑤C.②③D.②④⑤
3、(4分)下面的两个三角形一定全等的是( )
A.腰相等的两个等腰三角形
B.一个角对应相等的两个等腰三角形
C.斜边对应相等的两个直角三角形
D.底边相等的两个等腰直角三角形
4、(4分)如图,在中,对角线与相交于点,是边的中点,连接.若,则的度数为( )
A.B.C.D.
5、(4分)如图,在平行四边形ABCD中,∠BAC=78°,∠ACB=38°,则∠D的度数是( )
A.52°B.64°C.78°D.38°
6、(4分)如图,E是正方形ABCD的边BC的延长线上一点,若CE=CA,AE交CD于F,则∠FAC的度数是( )
A.22.5°B.30°C.45°D.67.5°
7、(4分)在平面直角坐标系中,点与点关于原点对称,则的值为( )
A.B.C.1D.3
8、(4分)一元一次不等式组的解集为x>a,则a与b的关系为( )
A.a>bB.a
9、(4分)直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是_____.
10、(4分)如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P、Q分别是BD、AB上的动点,则AP+PQ的最小值为______.
11、(4分)方程的解为_________.
12、(4分)如图,在平行四边形中,连接,且,过点作于点,过点作于点,在的延长线上取一点,,若,则的度数为____________.
13、(4分)如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=(________).
三、解答题(本大题共5个小题,共48分)
14、(12分)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.
(1)文学书和科普书的单价各多少钱?
(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?
15、(8分)将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象
(1)当b=0时,在同一直角坐标系中分别画出函数与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,比|x|大?
(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围
16、(8分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:
(1)根据上图填写下表:
(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
17、(10分)解不等式组:,并将不等式组的解集在所给数轴上表示出来.
18、(10分)先化简,再求值:÷(x﹣),其中x=+1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.
20、(4分)化简的结果为________.
21、(4分)一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.
22、(4分)若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.
23、(4分)已知b是a,c的比例中项,若a=4,c=16,则b=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组,并将它的解集在数轴表示出来.
25、(10分)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.
求证:∠ANC=∠ABE.
应用:Q是线段BC的中点,若BC=6,则PQ= .
26、(12分)由于受到手机更新换代的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.
(1)今年甲型号手机每台售价为多少元?
(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分k>0与k<0两种情况分别进行讨论即可得.
【详解】
当k>0时,y=kx-1的图象过一、三、四象限,的图象位于第一、三象限,观察可知选项B符合题意;
当k<0时,y=kx-1的图象过二、三、四象限,的图象位于第二、四象限,观察可知没有选项符合题意,
故选B.
本题考查了反比例函数图象与一次函数图象的结合,熟练掌握反比例函数的图象与性质以及一次函数的图象与性质是解题的关键.
2、A
【解析】
根据一次函数的定义条件进行逐一分析即可.
【详解】
解:①y=-2x是一次函数;
②自变量x在分母,故不是一次函数;
③y=-2x2自变量次数不为1,故不是一次函数;
④y=2是常数,故不是一次函数;
⑤y=2x-1是一次函数.
所以一次函数是①⑤.
故选:A.
本题主要考查了一次函数.解题的关键是掌握一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
3、D
【解析】
解:A.错误,腰相等的两个等腰三角形,没有明确顶角和底角的度数,所以不一定全等.
B.错误,一个角对应相等的两个等腰三角形,没有明确边的长度是否相等,所以不一定全等.
C.错误,斜边对应相等的两个直角三角形,没有明确直角三角形的直角边大小,所以不一定全等.
D.正确,底边相等的两个等腰直角三角形,明确了各个角的度数,以及一个边,符合ASA或AAS,所以,满足此条件的三角形一定全等.
故选D.
点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
4、B
【解析】
利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理以及平行线的性质即可得出答案
【详解】
°,∠BAC=80°
∠BCA=180°-50°=50°
对角线AC与BD相交与点O,E是CD的中点,
EO是△DBC的中位线
EO∥BC
∠1=∠ACB=50°
故选B.
本题考查三角形内角和定理,熟练掌握三角形的性质及平行线的性质是解题关键.
5、B
【解析】
根据三角形内角和定理求得∠B的度数,再根据平行四边形的性质即可求得答案.
【详解】
在△ABC中,∠BAC=78°,∠ACB=38°,
∴∠B=(180-78-38)=64°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=64° .
故选:B.
考查了平行四边形的性质,利用平行四边形对角相等得出答案是解题的关键.
6、A
【解析】
解:∵四边形ABCD是正方形,
∴∠ACB=45°,
∴∠E+∠∠FAC=∠ACB=45°,
∵CE=CA,
∴∠E=∠FAC,
∴∠FAC=∠ACB=22.5°.
故选A.
7、C
【解析】
直接利用关于原点对称点的性质得出a,b的值,进而得出答案
【详解】
解:点与点关于原点对称,
,,
.
故选:.
此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.
8、C
【解析】
【分析】根据不等式解集的确定方法,“大大取大”,可以直接得出答案.
【详解】∵一元一次不等式组的解集是x>a,
∴根据不等式解集的确定方法:大大取大,
∴a≥b,
故选C.
【点睛】本题考查了不等式解集的确定方法,熟练掌握不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键,也可以利用数形结合思想利用数轴来确定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>2
【解析】
根据一次函数的性质得出y随x的增大而增大,当x>2时,y>1,即可求出答案.
【详解】
解:∵直线y=kx+b(k>1)与x轴的交点为(2,1),
∴y随x的增大而增大,
当x>2时,y>1,
即kx+b>1.
故答案为x>2.
本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.
10、2
【解析】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
【详解】
解:作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
∴P′Q′=P′H,
∴AP′+P′Q′=AP′+P′H=AH,
根据垂线段最短可知,PA+PQ的最小值是线段AH的长,
∵AB=4,∠AHB=90°,∠ABH=45°,
∴AH=BH=2,
故答案为:2.
本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
11、
【解析】
采用分解因式法解方程即可.
【详解】
解:,解得.
本题考查了分解因式法解方程.
12、25
【解析】
根据平行四边形的性质得到BD=BA,根据全等三角形的性质得到AM=DN,推出△AMP是等腰直角三角形,得到∠MAP=∠APM=45°,根据三角形的外角的性质可得出答案.
【详解】
解:在平行四边形ABCD中,
∵AB=CD,
∵BD=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴∠AMB=∠DNB=90°,
在△ABM与△DBN中
,
∴△ABM≌△DBN(AAS),
∴AM=DN,
∵PM=DN,
∴AM=PM,
∴△AMP是等腰直角三角形,
∴∠MAP=∠APM=45°,
∵AB∥CD,
∴∠ABD=∠CDB=70°,
∴∠PAB=∠ABD-∠P=25°,
故答案为:25.
本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,熟练掌握性质和判定是解题的关键.
13、
【解析】
连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.
【详解】
解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:,
又,
∴.
综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
三、解答题(本大题共5个小题,共48分)
14、(1)文学书和科普书的单价分别是8元和1元.(2)至多还能购进466本科普书.
【解析】
(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:
,
解得:x=8,
经检验x=8是方程的解,并且符合题意.
∴x+4=1.
∴购进的文学书和科普书的单价分别是8元和1元.
②设购进文学书550本后至多还能购进y本科普书.依题意得
550×8+1y≤10000,
解得,
∵y为整数,
∴y的最大值为466
∴至多还能购进466本科普书.
15、(1)见解析,;(2)
【解析】
(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;
(2)利用图象法即可解决问题.
【详解】
解:
(1)当b=0时,y=|x+b|=|x|
列表如下:
描点并连线;
∴如图所示:该函数图像为所求
∵
∴或
∴两个函数的交点坐标为A,B(2,2),
∴观察图象可知:时,比大;
(2)如图,观察图象可知满足条件的b的值为,
本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.
16、(1)85,1;(2)八⑴班的成绩较好;(3)八⑵班实力更强些,理由见解析
【解析】
(1)根据中位数和众数的定义填空.
(2)根据平均数和中位数比较两个班的成绩.
(3)比较每班前两名选手的成绩即可.
【详解】
解:(1)由条形图数据可知:中位数填85,众数填1.
故答案为:85,1;
(2)因两班平均数相同,
但八(1)班的中位数高,
所以八(1)班的成绩较好.
(3)如果每班各选2名选手参加决赛,我认为八(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中八(2)班的成绩为1分和1分,而八(1)班的成绩为1分和85分.
本题考查了运用平均数,中位数与众数解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.
17、,见解析
【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出即可.
【详解】
解:
∵解不等式①得:x≤4,
解不等式②得:x<2,
∴原不等式组的解集为x<2,
不等式组的解集在数轴上表示如下:
.
此题考查解一元一次不等式组,在数轴上表示不等式组的解集,解题关键是能根据不等式得解集找出不等式组的解集.
18、.
【解析】
先算括号里面的,再算除法,把分式化为最简公式,把x的值代入进行计算即可
【详解】
原式=
=
= ,
当x= +1时,原式=.
此题考查分式的化简求值,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、()n.
【解析】
第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.
【详解】
第1个正方形的边长是1,对角线长为;
第二个正方形的边长为,对角线长为()2=2
第3个正方形的边长是2,对角线长为2=()3;…,
∴第n个正方形的对角线长为()n;
故答案为()n.
本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.
20、
【解析】
首先把分子、分母分解因式,然后约分即可.
【详解】
解:==
本题主要考查了分式的化简,正确进行因式分解是解题的关键.
21、1
【解析】
由平均数的公式得:(51+1+x+4+5)÷5=3,
解得x=3;
∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;
故答案是:1.
22、2
【解析】
先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.
【详解】
解:解方程得第三边的边长为2或1.
第三边的边长,
第三边的边长为1,
这个三角形的周长是.
故答案为2.
本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.
23、±8
【解析】
根据比例中项的定义即可求解.
【详解】
∵b是a,c的比例中项,若a=4,c=16,
∴b2=ac=4×16=64,
∴b=±8,
故答案为±8
此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.
二、解答题(本大题共3个小题,共30分)
24、x≤1,将解集表示在数轴上见解析.
【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上画出来
【详解】
解不等式①,得:x<2,
解不等式②,得:x≤1,
将解集表示在数轴上如下:
此题考查在数轴上表示不等式的解集和解一元一次不等式组,解题关键在于先求出不等式的解集
25、证明见解析,3
【解析】
探究:根据正方形性质得出AN=AB,AC=AE,∠NAB=∠CAE=90°,求出∠NAC=∠BAE,证出△ANC≌△ABE即可;
应用:先证明△BCP为直角三角形,然后,依据直角三角形斜边上的中线等于斜边的一半求解即可.
【详解】
证明:∵四边形ANMB和ACDE是正方形,
∴AN=AB,AC=AE,∠NAB=∠CAE=90°,
∵∠NAC=∠NAB+∠BAC,∠BAE=∠BAC+∠CAE,
∴∠NAC=∠BAE,
在△ANC和△ABE中,AN=AB,∠NAC=∠BAE,AC=AE
∴△ANC≌△ABE(SAS),
∴∠ANC=∠ABE.
应用:如图所示,
∵四边形NABM是正方形,
∴∠NAB=90°,
∴∠ANC+∠AON=90°,
∵∠BOP=∠AON,∠ANC=∠ABE,
∴∠ABP+∠BOP=90°,
∴∠BPC=∠ABP+∠BOP=90°,
∵Q为BC中点,BC=6,
∴PQ=BC=3,
本题考查了三角形的外角性质,直角三角形斜边上中线性质,垂直定义,全等三角形的性质和判定,正方形性质的应用,关键是推出△ANC≌△ABE和推出∠BPC=90°.
26、(1)今年甲型号手机每台售价为1元;(2)共有5种进货方案.
【解析】
分析: (1)先设今年甲型号手机每台售价为x元,根据题意列出方程,解出x的值,再进行检验,即可得出答案;
(2)先设购进甲型号手机m台,根据题意列出不等式组,求出m的取值范围,即可得出进货方案.
详解:
(1)设今年甲型号手机每台售价为x元,由题意得,
解得x=1.
经检验x=1是方程的解.
故今年甲型号手机每台售价为1元.
(2)设购进甲型号手机m台,由题意得,
17600≤1000m+800(20-m)≤18400,
解得 8≤m≤2.
因为m只能取整数,所以m取8、9、10、11、2,共有5种进货方案.
点睛: 此题考查了一元一次不等式组的应用,要能根据题意列出不等式组,关键是根据不等式组的解集求出所有的进货方案,注意解分式方程要检验,是一道实际问题.
题号
一
二
三
四
五
总分
得分
批阅人
平均数
中位数
众数
八(1)班
85
85
八(2)班
85
80
x
-1
0
1
1
y=|x|
1
0
1
2025届曲靖市沾益区大坡乡九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份2025届曲靖市沾益区大坡乡九年级数学第一学期开学教学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年曲靖市沾益区大坡乡九上数学期末监测模拟试题含答案: 这是一份2023-2024学年曲靖市沾益区大坡乡九上数学期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022-2023学年曲靖市沾益区大坡乡七下数学期末考试模拟试题含答案: 这是一份2022-2023学年曲靖市沾益区大坡乡七下数学期末考试模拟试题含答案,共8页。试卷主要包含了已知,则的值是,用反证法证明等内容,欢迎下载使用。