搜索
    上传资料 赚现金
    英语朗读宝

    山东德州七中学2024-2025学年数学九上开学预测试题【含答案】

    山东德州七中学2024-2025学年数学九上开学预测试题【含答案】第1页
    山东德州七中学2024-2025学年数学九上开学预测试题【含答案】第2页
    山东德州七中学2024-2025学年数学九上开学预测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东德州七中学2024-2025学年数学九上开学预测试题【含答案】

    展开

    这是一份山东德州七中学2024-2025学年数学九上开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某市五月份连续五天的日最高气温分别为33、30、31、31、29(单位:ºC),这组数据的众数是( )
    A.29B.30C.31D.33
    2、(4分)已知点的坐标是,点与点关于轴对称,则点的坐标为( )
    A.B.C.D.
    3、(4分)在端午节到来之前,学校食堂推荐粽子专卖店的号三种粽子,对全校师生爱吃哪种粽子作调查,以决定最终的采购,下面的统计量中最值得关注的是( )
    A.方差B.平均数C.众数D.中位数
    4、(4分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是( )
    A.,,B.,,C.,,D.,,
    5、(4分)如图,在一次实践活动课上,小明为了测量池塘B、C两点间的距离,他先在池塘的一侧选定一点A,然后测量出AB、AC的中点D、E,且DE=10m,于是可以计算出池塘B、C两点间的距离是( )
    A.5mB.10mC.15mD.20m
    6、(4分)下列代数式变形正确的是( )
    A.B.
    C.D.
    7、(4分)小华、小明两同学在同一条长为1100米的直路上进行跑步比赛,小华、小明跑步的平均速度分别为3米/秒和5米/秒,小明从起点出发,小华在小明前面200米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设小华与小明之间的距离y(单位:米),他们跑步的时间为x(单位:秒),则表示y与x之间的函数关系的图象是( ).
    A.B.C.D.
    8、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①BE=DF;②∠AEB=75°;③CE=2;④S正方形ABCD=2+,其中正确答案是( )
    A.①②B.②③C.①②④D.①②③
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)矩形中,对角线交于点,,则的长是__________.
    10、(4分)已知反比例函数,当时,y的取值范围是________.
    11、(4分)一次函数y=kx+b(k、b是常数)当自变量x的取值为1≤x≤5时,对应的函数值的范围为﹣2≤y≤2,则此一次函数的解析式为_____.
    12、(4分)廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
    则这10名学生周末利用网络进行学习的平均时间是________小时.
    13、(4分)如图,直线y=-x+m与y=nx+4n的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的解集为___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)2018年5月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.
    (1)冲锋舟从A地到C地的时间为 分钟,冲锋舟在静水中的速度为 千米/分,水流的速度为 千米/分.
    (2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b,若冲锋舟在距离A地 千米处与救生艇第二次相遇,求k、b的值.
    15、(8分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级各有150人参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下:
    七年级 88 94 90 94 84 94 99 94 99 100
    八年级 84 93 88 94 93 98 93 98 97 99
    整理数据:按如下分段整理样本数据并补全表格:
    分析数据:补全下列表格中的统计量:
    得出结论:你认为抽取的学生哪个年级的成绩较为稳定?并说明理由.
    16、(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.
    17、(10分)如图,△ABC中,∠ACB=90°,D是AB中点,过点B作直线CD的垂线,垂足为E,
    求证:∠EBC=∠A.
    18、(10分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验两人在相同条件下各射靶次,命中的环数如下:
    甲:,,,,,,,,,
    乙:,,,,,,,,,
    (1)分别计算两组数据的方差.
    (2)如果你是教练你会选拔谁参加比赛?为什么?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在比例尺1∶8000000的地图上,量得太原到北京的距离为6.4厘米,则太原到北京的实际距离为公里。
    20、(4分)如下图,用方向和距离表示火车站相对于仓库的位置是__________.
    21、(4分)如图,在平行四边形ABCD中,AB=4,∠ABC=60°,点E为BC上的一点,点F,G分别为DE,AD的中点,则GF长的最小值为________________.
    22、(4分)已知,则_______.
    23、(4分)某射手在相同条件下进行射击训练,结果如下:
    该射手击中靶心的概率的估计值是______(精确到0.01).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,延长AB至点E,延长CD至点F,使得,连接EF,分别交AD,BC于点M,N,连接AN,CM.
    (1)求证:;
    (2)四边形AMCN是平行四边形吗?请说明理由.
    25、(10分)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD外角平分线CM上一点,且CF=AE,连接BE,EF.
    (1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;
    (2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;
    (3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)
    26、(12分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,
    (1)画出一次函数y2=x+3的图象;
    (2)求点C坐标;
    (3)如果y1>y2,那么x的取值范围是______.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据众数的概念:一组数据中出现次数最多的数据为这组数据的众数即可得出答案.
    【详解】
    根据众数的概念可知,31出现了2次,次数最多,
    ∴这组数据的众数为31,
    故选:C.
    本题主要考查众数,掌握众数的概念是解题的关键.
    2、B
    【解析】
    根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
    【详解】
    点A关于y轴对称的点的坐标是B,
    故选:B.
    此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.
    3、C
    【解析】
    学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.
    【详解】
    解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.
    故选:C.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    4、C
    【解析】
    先求出两小边的平方和,再求出大边的平方,看看是否相等即可.
    【详解】
    解:A、62+72≠82,所以以6,7,8为边的三角形不是直角三角形,故本选项不符合题意;
    B、52+62≠82,所以以5,6,8为边的三角形不是直角三角形,故本选项不符合题意;
    C、42+52=()2,所以以,4,5为边的三角形是直角三角形,故本选项符合题意;
    D、42+52≠62,所以以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;
    故选:C.
    本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
    5、D
    【解析】
    根据三角形中位线定理可得到BC=2DE,可得到答案.
    【详解】
    ∵D、E分别为AB、AC的中点,
    ∴DE为△ABC的中位线,
    ∴BC=2DE=20m,
    故选D.
    本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.
    6、D
    【解析】
    利用分式的基本性质对四个选项一一进行恒等变形,即可得出正确答案.
    【详解】
    解:A.,故本选项变形错误;
    B. ,故本选项变形错误;
    C.,故本选项变形错误;
    D.,故本选项变形正确,
    故选D.
    本题考查了分式的基本性质.熟练应用分式的基本性质对分式进行约分和通分是解题的关键.
    7、D
    【解析】
    试题分析:跑步时间为x秒,当两人距离为0时,即此时两个人在同一位置,此时,即时,两个人距离为0,当小华到达终点时,小明还未到达,小华到达终点的时间为s,此时小明所处的位置为m,两个人之间的距离为m。
    考点:简单应用题的函数图象
    点评:此题较为简单,通过计算两个人相遇时的时间,以及其中一个人到达终点后,两个人之间的距离,即可画出图象。
    8、C
    【解析】
    证明Rt△ABE≌Rt△ADF,根据全等三角形的性质得到BE=DF;根据等腰直角三角形的性质、等边三角形的性质求出∠AEB;根据等腰直角三角形的性质求出CE;根据勾股定理求出正方形的边长.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=AD,
    ∵△AEF是等边三角形,
    ∴AE=AF,
    在Rt△ABE和Rt△ADF中,

    ∴Rt△ABE≌Rt△ADF(HL),
    ∴BE=DF,①说法正确;
    ∵CB=CD,BE=DF,
    ∴CE=CF,即△ECF是等腰直角三角形,
    ∴∠CEF=45°,
    ∵∠AEF=60°,
    ∴∠AEB=75°,②说法正确;
    如图,∵△CEF为等腰直角三角形,EF=2,
    ∴CE=,③说法错误;
    设正方形的边长为a,则DF=a-,
    在Rt△ADF中,
    AD2+DF2=AF2,即a2+(a-)2=4,
    解得a=或a=(舍去),
    则a2=2+,即S正方形ABCD=2+,④说法正确,
    故选C.
    本题考查的是正方形的性质、全等三角形的判定和性质,解答本题的关键是熟练掌握全等三角形的证明.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据矩形的对角线互相平分且相等可得OA=OC,然后由勾股定理列出方程求解得出BC的长和AC的长,然后根据矩形的对角线互相平分可得AO的长。
    【详解】
    解:如图,
    在矩形ABCD中,OA=OC,
    ∵∠AOB=60°,∠ABC=90°
    ∴∠BAC=30°
    ∴AC=2BC
    设BC=x,则AC=2x

    解得x=,则AC=2x=2
    ∴AO==.
    本题考查了矩形的对角线互相平分且相等的性质和含30°的直角三角形的性质,以及勾股定理的应用,是基础题。
    10、
    【解析】
    利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.
    【详解】
    ∵k=1>0,
    ∴在每个象限内y随x的增大而减小,
    又∵当x=1时,y=1,
    当x=2时,y=5,
    ∴当1<x<2时,5<y<1.
    故答案为.
    本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.
    11、y=x﹣1或y=﹣x+1
    【解析】
    分k>0及k<0两种情况考虑:当k>0时,y值随x的增大而增大,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式;当k<0时,y值随x的增大而减小,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式.综上即可得出结论.
    【详解】
    当k>0时,y值随x的增大而增大,
    ∴,解得:,
    ∴一次函数的解析式为y=x﹣1;
    当k<0时,y值随x的增大而减小,
    ∴,解得:,
    ∴一次函数的解析式为y=﹣x+1.
    综上所述:一次函数的解析式为y=x﹣1或y=﹣x+1.
    故答案为y=x﹣1或y=﹣x+1.
    本题考查了待定系数法求一次函数解析式以及一次函数的性质,分k>0及k<0两种情况利用待定系数法求出函数解析式是解题的关键.
    12、2.1
    【解析】
    依据加权平均数的概念求解可得.
    【详解】
    解:这10名学生周末利用网络进行学习的平均时间是:

    故答案为:2.1.
    本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
    13、
    【解析】
    令时,解得,则与x轴的交点为(﹣4,0),再根据图象分析即可判断.
    【详解】
    令时,解得,故与x轴的交点为(﹣4,0).
    由函数图象可得,当时,函数的图象在x轴上方,且其函数图象在函数图象的下方,故解集是.
    故答案为: .
    本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)24,, (2)-,1
    【解析】
    (1)根据题意和函数图象中的数据,可以解答本题;
    (2)根据题意和函数图象中的数据,可以求得k、b的值,本题得以解决.
    【详解】
    (1)由图象可得,
    冲锋舟从A地到C地的时间为12×(20÷10)=24(分钟),
    设冲锋舟在静水中的速度为a千米/分钟,水流的速度为b千米/分钟,
    ,解得, ,
    故答案为:24,,;
    (2)冲锋舟在距离A地千米时,冲锋舟所用时间为:=8(分钟),
    ∴救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b过点(12,10),(52,),

    解得,,
    即k、b的值分别是-,1.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想和一次函数的性质解答.
    15、1,1,93.5,1;八年级的成绩较为稳定.
    【解析】
    根据中位数,众数和方差的定义即可得到结论.
    【详解】
    整理数据:按如下分段整理样本数据并补全表格:
    分析数据:补全下列表格中的统计量:
    八年级的成绩较为稳定,理由:∵七年级的方差=24.2,八年级的方差=20.4,24.2>20.4,∴八年级的成绩较为稳定.
    故答案为:1,1,93.5,1.
    本题考查了中位数,众数,方差,熟练掌握中位线,众数和方差的定义是解题的关键.
    16、-1
    【解析】
    先化简,再选出一个合适的整数代入即可,要注意a的取值范围.
    【详解】
    解:

    当时,原式.
    本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.
    17、详见解析
    【解析】
    由直角三角形斜边中线等于斜边的一半可得CD=BD,从而可得∠DCB=∠ABC,再根据直角三角形两锐角互余通过推导即可得出答案.
    【详解】
    ∵∠ACB=90°,
    ∴∠A+∠ABC=90°,
    又∵D是AB中点,
    ∴CD=BD,
    ∴∠DCB=∠ABC,
    又∵∠E=90°,
    ∴∠ECB+∠EBC=90°,
    ∴∠EBC=∠A.
    本题考查了直角三角形斜边中线的性质,直角三角形两锐角互余,等腰三角形的性质,熟练掌握和灵活运用相关性质是解题的关键.
    18、 (1) ,;(2) 选拔乙参加比赛.理由见解析.
    【解析】
    (1)先求出平均数,再根据方差的定义求解;
    (2)比较甲、乙两人的成绩的方差作出判断.
    【详解】
    解:(1),



    (2)因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,所以乙同学的成绩较稳定,应选乙参加比赛.
    本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、512
    【解析】设甲地到乙地的实际距离为x厘米,
    根据题意得:1/8000000 =6.4/x ,
    解得:x=51200000,
    ∵51200000厘米=512公里,
    ∴甲地到乙地的实际距离为512公里.
    20、东偏北20°方向,距离仓库50km
    【解析】
    根据方位角的概念,可得答案.
    【详解】
    解:火车站相对于仓库的位置是东偏北20°方向,距离仓库50km,
    故答案为:东偏北20°方向,距离仓库50km.
    本题考查了方向角的知识点,解答本题的关键是注意是火车站在仓库的什么方向.
    21、
    【解析】
    根据G、F分别为AD和DE的中点,欲使GF最小,则只要使AE为最短,即AE必为△ABC中BC边上的高,再利用三角形的中位线求解即可.
    【详解】
    解:∵G、F分别为AD和DE的中点,∴线段GF为△ADE的边AD及DE上的中位线,∴GF=AE,欲使GF最小,则只要使AE为最短,∴AE必为△ABC中BC边上的高,∵四边形ABCD为一平行四边形且AB=4、∠ABC=60°,作AE⊥BC于E,E为垂足,∴∠BAE=30°,∴BE=2, ∴AE=,∴GF=AE=.故答案为.
    本题考查了最短路径,点到直线的距离及三角形的中位线定理,掌握点到直线的距离及三角形的中位线定理是解题的关键.
    22、
    【解析】
    先对变形,得到b=,然后将b=代入化简计算即可.
    【详解】
    解:由,b=

    故答案为-2.
    本题考查了已知等式,求另一代数式值的问题;其解答关键在于对代数式进行变形,寻找它们之间的联系
    23、0.1.
    【解析】
    根据表格中实验的频率,然后根据频率即可估计概率.
    【详解】
    解:由击中靶心频率都在0.1上下波动,
    ∴该射手击中靶心的概率的估计值是0.1.
    故答案为:0.1.
    本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)是,理由见解析
    【解析】
    (1)根据平行四边形的性质得出∠BAD=∠BCD,AB∥CD,根据平行线的性质得出∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,求出∠ADF=∠EBC,根据全等三角形的判定得出即可;
    (2)根据全等求出DM=BN,求出AM=CN,根据平行四边形的判定得出即可.
    【详解】
    (1)证明:在中,,
    ∵,
    ∴,,
    ∴,
    ∵延长AB至点E,延长CD至点F,
    ∴,
    又∵,
    ∴;
    (2)由(1)知,
    ∴,
    在中,,且

    ∴,且,
    ∴四边形ANCN是平行四边形.
    本题考查了平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点,能综合运用定理进行推理是解此题的关键.
    25、(1)EF=BE;(2)EF=BE,理由见解析;(3)当B,E,F在一条直线上时,∠CBE=22.5°
    【解析】
    (1)证明△ECF是等腰直角三角形即可;
    (2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明BE=DE,△DEF是等腰直角三角形即可;
    (3)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明∠CBF=∠CFB即可.
    【详解】
    解:(1)如图1中,结论:EF=BE.
    理由:
    ∵四边形ABCD是正方形,
    ∴BA=BC,∠ABC=∠BCD=90°,∠ACD=∠ACB=45°,
    ∵AE=EC,
    ∴BE=AE=EC,
    ∵CM平分∠DCG,
    ∴∠DCF=45°,
    ∴∠ECF=90°,
    ∵CF=AE,
    ∴EC=CF,
    ∴EF=EC,
    ∴EF=BE.
    (2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.
    理由:连接ED,DF.
    由正方形的对称性可知,BE=DE,∠CBE=∠CDE
    ∵正方形ABCD,
    ∴AB=CD,∠BAC=45°,
    ∵点F是正方形ABCD外角平分线CM上一点,
    ∴∠DCF=45°,
    ∴∠BAC=∠DCF,
    由∵CF=AE,
    ∴△ABE≌△CDF(SAS),
    ∴BE=DF,∠ABE=∠CDF,
    ∴DE=DF,
    又∵∠ABE+∠CBE=90°,
    ∴∠CDF+∠CDE=90°,
    即∠EDF=90°,
    ∴△EDF是等腰直角三角形
    ∴EF=DE,
    ∴EF=DE.
    (3)如图3中,当点B,E,F在一条直线上时,∠图形如图2所示:(1)中的结论仍然成立,即EF=BE.CBE=22.5°.
    理由:∵∠ECF=∠EDF=90°,
    ∴E,C,F,D四点共圆,
    ∴∠BFC=∠CDE,
    ∵∠ABE=∠ADE,∠ABC=∠ADC=90°,
    ∴∠CDE=∠CBE,
    ∴∠CBF=∠CFB,
    ∵∠FCG=∠CBF+∠CFB=45°,
    ∴∠CBE=22.5°.
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,三角形的外角的性质等知识,解题的关键是正确寻找全等三角形解决问题.
    26、 (1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.
    【解析】
    (1)分别求出一次函数y1=x+3与两坐标轴的交点,再过这两个交点画直线即可;
    (1)将两个一次函数的解析式联立得到方程组,解方程组即可求出点C坐标;
    (3)根据图象,找出y1落在y1上方的部分对应的自变量的取值范围即可.
    【详解】
    解:(1)∵y1=x+3,
    ∴当y1=0时,x+3=0,解得x=﹣4,
    当x=0时,y1=3,
    ∴直线y1=x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).
    图象如下所示:
    (1)解方程组,得,
    则点C坐标为(﹣1,);
    (3)如果y1>y1,那么x的取值范围是x<﹣1.
    故答案为(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.
    本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握.
    题号





    总分
    得分
    时间(单位:小时)
    4
    3
    2
    l
    0
    人数
    3
    4
    1
    1
    1

    相关试卷

    2025届山东省德州庆云县联考九上数学开学预测试题【含答案】:

    这是一份2025届山东省德州庆云县联考九上数学开学预测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省聊城市冠县九上数学开学预测试题【含答案】:

    这是一份2024-2025学年山东省聊城市冠县九上数学开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省德州市夏津实验中学数学九上开学检测模拟试题【含答案】:

    这是一份2024-2025学年山东省德州市夏津实验中学数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map